

 [image:]

RLgraph’s documentation

RLgraph is a library for designing flexible reinforcement learning graphs

	README [https://github.com/rlgraph/rlgraph/blob/master/README.md]

	Introduction to RLgraph

	The Space Classes
	What is a Space?

	There are two major types of Spaces: BoxSpaces and ContainerSpaces.

	Special Ranks of BoxSpaces.

	The Environment Classes
	What is an environment?

	RLgraph’s environment adapters.

	What is an RLgraph Component?
	The Component Base Class

	How to Write Your Own Custom Component
	A Simple Single-Value Memory Component

	The Complete Code for Our Custom Component

	How to Test Your Components
	Writing a New Test Case with Python’s Unittest Module

	RLgraph API Reference Documentation
	1. RLgraph Core API

	2. Space Classes and Space Utilities

	3. Agent Classes

	4. Components Reference

	5. Environment Classes

Indices and tables

	Index

	Module Index

	Search Page

 [image:]

Introduction to RLgraph

 [image:]

The Space Classes

What is a Space?

Spaces in RLgraph are used to define the types and shapes of data flowing into, between, and from the different
machine learning components. For example, an environment may output an RGB color image (e.g. 80x80 pixels) at any
time step, which our RL algorithm will use as its only input to determine the next action.
An RGB color image is usually a member of an int-type space with the exact data type being uint8
(meaning the value can range from 0 to 255) and with a shape of [width x height x 3], where the 3 represents the three
color channels: red, green, and blue.
Values of 0 mean no intensity in a color channel, 255 means full intensity.

Difference between Space and Tensor

Whereas a space defines the constraints in terms of dimensionality and data type of some data,
a tensor is an members (or an instance) of a Space. Tensors hold actual numeric values (other than a space),
which obey the rules and bounds of the given Space.

[image: Examples for a rank-0 (scalar), a rank-1 (vector), and a rank-2 (matrix) int-type tensor.]
Above: Examples for a rank-0 (scalar), a rank-1 (vector), and a rank-2 (matrix) int-type tensor.

Ranks, Dimensions and Shapes

The rank of an example image tensor is 3, since we have - for each image instance - a 3D cube of numbers defining the
exact look of that image. The 3 ranks stand for the width, height and color depth of the image.
An example rank-3 tensor is shown in the figure below.

[image: Example for a rank-3 tensor (e.g. an RGB-image).]
Above: Example for a rank-3 tensor (e.g. an RGB-image).

A space’s or a tensor’s rank is often confused with it’s dimensions. In RLgraph, we
speak of dimensions only as the size of each rank. Compare this to the figure above: The dimensions for each rank are 4
(1st rank), 3 (2nd rank), and 3 (3rd rank). In the tensorflow documentation, you will often find the term nD tensor
for a rank-n tensor, which is a little misleading.

Another often used term for the set of all dimensionality values is the “shape” and it’s often provided as a
tuple. The shape of our example image is (80, 80, 3) and this shape tuple is sufficient to determine both a space’s
rank (len(shape)) and its dimensions (shape[0], shape[1], and shape[2]).

There are two major types of Spaces: BoxSpaces and ContainerSpaces.

Box Spaces

A BoxSpace is simply an n-dimensional cube of numbers (or strings), where the numbers must all be of the same data type
(“dtype” from here on). RLgraph’s dtypes are based on the numpy type system and supported types are np.ints (such as
np.int32 or np.uint8), np.floats (e.g. np.float32), np.bool_, as well as a box type for String data, which has the
dtype np.string_. The rank of a box can be anything from rank-0 (a single scalar value), rank-1 (a vector of
values), rank-2 (a matrix of values), rank-3 (a cube), to any higher dimensional box. All tensors shown in the
figures on top are examples for box-space tensors.

Container Spaces

Container Spaces can contain Box Spaces as well as other Container Spaces in an arbitrarily nested fashion. The two
supported container types are Tuple and Dict.

A Tuple is an ordered sequence of other Spaces (similar to a python tuple). For example:
An environment that produces an RGB image and a
text string at each time step could have the space: Tuple(IntBox(80,80,3, np.uint8), TextBox()).

Another example for a tuple space is shown below:

[image: Example Tuple space with 3 box-type child-spaces.]
Above: Example Tuple space with 3 box-type child-spaces.
Note that a Tuple can contain other container spaces in a deeply nested fashion. Shown here is only a
relatively simple Tuple with only box spaces as single elements.

Another way to describe this space is through a keyed Dict space (similar to python dicts), with the keys
“image” and “text”. For example: Dict({“image”: IntBox(80,80,3, np.uint8), “text”: TextBox()}).

Containers are fully equivalent to Box Space classes in that they also have shapes and dtypes. However, these are
represented by heterogeneous tuples. Our Image-and-Text Dict space from above, for example, would have a shape of
((80,80,3),()), a rank of (3, 0) and a dtype of (np.uint8, np.string_).

[image: Example Dict space with 2 keys, each one holding a box-type child-space.]
Above: Example Dict space with 2 keys, each one holding a box-type child-space.
Note here that for Dict spaces, the order of the keys are sorted alphabetically before generating shape, rank and
dtype tuples. In this case: “key A” comes before “key Z”. For Tuple spaces, this order is given by
the sequence of sub-Spaces inside the Tuple. Nested Container Spaces (e.g. a Dict inside another Dict) generate
equally nested shape, rank and dtype tuples.

Special Ranks of BoxSpaces.

TODO: Describe the generic special ranks once we have them implemented (will replace the current special ranks: batch
and time).

 [image:]

The Environment Classes

What is an environment?

The generic reinforcement learning problem can be broken down into the following ever repeating sequence of steps.
This sequence is also often referred to as a Markov Decision Process (MDP). An environment describes a particular
MDP:

	An agent that “lives” in some environment observes the current state of that environment. The state could be
anything from a simple x/y position tuple of the agent to an image of a camera (that the agent has
access to) or a line of text from the agent’s chat partner (the agent is a chat bot). The nature of this
state signal - its data type and shape - is called the “state space”.

	Based on that state observation, the agent now picks an action. The environment dictates from which space this
action may be chosen. For example, one could think of a computer game environment, in which an agent has to
move through a
2D maze and can pick the actions up, down, left, and right at each time step. This space from which to chose is
called the “action space”. In RLgraph, both state- and action spaces are usually given by the environment.

	The chosen action is now executed on the environment (e.g. the agent decided to move left) and the environment
changes because of that action. This change is described by the transition function \(P(S'|S,A)\), which
outputs the probability for ending up in next state S’ given that the agent chose action A after having
observed state S.

	Besides producing a next state (S’), the environment also emits a reward signal (R), which is determined by
the reward function \(R(S'|S,A)\), which describes the expected reward when reaching state S’ after having
chosen action A in (the previous) state S.

[image: The basic cycle in reinforcement learning.]
Above: The basic cycle in reinforcement learning. |br| (source:
Reinforcement Learning - An Introduction - 2nd Edition [https://https://www.amazon.com/dp/0262039249/])

	We now start this procedure again, using S’ as our
new observation. We pick another action, change the environment through that action (transition function P),
observe the next state (S’‘) and receive another reward (\(R_{t+1}\)), and so on and so forth (see figure above).

	The collected rewards (\(R_t\)) can be used by the agent for learning to act smarter, in fact the reinforcement
learning incentive is to pick actions in such a way as to maximize the accumulated reward over some amount of
time (usually some episode, after which the environment must be reset to some initial state).

RLgraph’s environment adapters.

RLGraph supports many popular environment types and standards and offers a common interface into all these.
The base class is the Environment and its most important API-methods are reset (to reset the environment) and step
(to execute an action).
In the following, we will briefly describe the different supported environment types. If you are interested in
writing your own environments for your own RL research, we will be very happy to receive your pull request.
For more information on our environments, see the
environment reference documentation.

OpenAI Gym

The OpenAI Gym [https://gym.openai.com/envs/] standard is the most widely used type of environment in reinforcement
learning research. It contains the famous set of Atari 2600 games (each game has a RAM state- and a 2D image version),
simple text-rendered grid-worlds, a set of robotics tasks, continuous control tasks (via the MuJoCO physics simulator),
and many others.

[image: The "Ant-v2" environment, one of the many MuJoCo-simulator tasks of the OpenAI Gym.]
Above: The “Ant-v2” environment, one of the many MuJoCo-simulator tasks of the OpenAI Gym.
(source: openAI [https://gym.openai.com/]).

RLgraph’s OpenAIGymEnv class serves as an adapter between RLgraph code and any of these openAI Gym
environments. For example, in order to have your agent learn how to play Breakout from image pixels, you would create
the environment under RLgraph via:

from rlgraph.environments import OpenAIGymEnv
Create the env.
breakout_env = OpenAIGymEnv("Breakout-v0", visualize=True)
Reset the env.
breakout_env.reset()
Execute 100 random actions in the env.
for _ in range(100):
 state, reward, is_terminal, info = breakout_env.step(breakout_env.action_space.sample())
 # Reset if terminal state was reached.
 if is_terminal:
 breakout_env.reset()

Deepmind Lab

Deepmind Lab [http://https://github.com/deepmind/lab] is Google DeepMind’s environment of choice for their advanced
RL research. It’s a fully customizable suite of 3D environments (including mazes and other interesting worlds),
which are usually navigated by the agent through a 1st person’s perspective.

[image: The "Nav Maze Arena" environment of the DM Lab.]
Above: The “Nav Maze Arena” environment of the DM Lab.
(source: deepmind [https://deepmind.com/blog/open-sourcing-deepmind-lab/]).

Different state observation items can be configured as needed at environment construction time, e.g. an image
capturing the 1st person view from inside the
maze or a textual input offering instructions on where to go next (e.g. “blue ladder”).
When using more than one state observation items, the Rlgraph state space will be a Dict with the keys describing the
nature of the different observation items (e.g. “RGB_INTERLEAVED” for an RGB image, “INSTR” for the instruction string).

DM Lab itself (and hence also its RLgraph adapter) is somewhat hard to install and only runs on Linux and Mac.
For details, you can take a look at our
Docker file [https://github.com/rlgraph/rlgraph/blob/master/docker/Dockerfile] to see which steps are required in
order to get it up and running.

Simple Grid Worlds

Grid worlds are a great way to quickly test the learning capabilities of our agents. They are simple worlds with square
fields on which an agent can move up, down, left or right. There are walls, through which an agent cannot move,
fire, on which a negative reward is collected, holes, into which an agent will fall to collect a negative reward
and end the episode, a starting state, from which the agent starts after a reset, and a goal state, which the agent
has to reach in order to end the episode and to collect a large reward.

RLgraph comes with its own GridWorld environment class that can be customized in its map (dimensions, locations of
walls, etc..), the transition- and the reward function.

[image: The 4x4 grid world showing the agent's position (X), some holes (H) and the to-be-reached goal state (G). Allowed actions are up, down, left and right.]
Above: The 4x4 grid world showing the agent’s position (X), some holes (H) and the to-be-reached
goal state (G). Allowed actions are up, down, left and right.

Check out the reference documentation on the GridWorld and other supported environments here.

 [image:]

What is an RLgraph Component?

Components are the basic building blocks, which you will use to build any machine learning and reinforcement learning
models with. A component is the smallest unit, which can be run and tested in and by itself via RLgraph’s different
executor and testing classes. RLgraph components span from simple (and single) neural network layers to highly complex
policy networks, memories, optimizers and mathematical components, such as loss functions.

Each component contains:

	… any number of sub-components, each of which may again contain their own sub-components (also sometimes
called “child components”). Hence components are arbitrarily nestable inside each other.

	… at least one API-method, so that clients of the component (in the end this will be our reinforcement learning agent)
can use it.

[image: A DenseLayer component (1) with two API-methods (2), one graph function (3) and two variables (kernel and bias) (4).]
Above: A DenseLayer component (1) with two API-methods (2), one graph function (3) and two variables (kernel and
bias) (4).

	… any number of “graph functions”, which are special component methods, which contain the actual
computation code. These are the only places, where you will find backend (tensorflow, pytorch, etc..) specific code.

	… any number of variables for the component to use for its computations (graph functions).

On the following page, we will walk through building our own custom
component, which will include all of the above items. But let’s first talk in some more detail about RLgraph’s
Component base class.

The Component Base Class

The Component base class contains the core functionality, which every RLgraph Component inherits from.
Its most important methods are listed below. For a more detailed overview, please take a look at the
Component reference documentation.

	add_components: This method is used to add an arbitrary number of sub-components to the component itself.

	check_input_spaces: Can be used to sanity check the incoming spaces (see the
documentation on RLgraph’s Space classes) of all API-method call arguments.

	create_variables: This method is called automatically by the RLgraph build system and can be implemented
in order to create an arbitrary number of variables used by the component’s computation functions
(“graph functions”).

	copy: Copies the component and returns a new Component object that is identical to the original one. This is
useful, for example, to create a target network as a copy of the main policy network in a DQN-type agent.

API-Methods

A component’s API-methods are its outside facing handles through which clients of the component (either another
component or an agent that contains the component in question) can access and control its behavior.
For example, a typical memory component would need an insert_records API-method to insert some data into the memory,
a get_records method to retrieve a certain number of already stored records, and maybe a clear method to wipe out
all stored information from the memory.

API-methods are normal class methods, but must be tagged with the @rlgraph_api decorator, which can be imported as
follows:

from rlgraph.utils.decorators import rlgraph_api

An API-method can have any arbitrary combination of regular python args and kwargs, as well as define default
values for some of these.
For example:

inside some component class ...
...
@rlgraph_api
def my_api_method(self, a, b=5, c=None):
 # do and return something

Calling the above API-method (e.g. from its parent component) requires the call argument a to be provided, whereas
b and c are optional arguments. As you may recall from the spaces chapter, information in RLgraph
is passed around between components within fixed space constraints. In fact, each API-method call argument (a, b,
and c in our example above) has a dedicated space after the final graph has been built from all components in it.

Important note: Up until now, if an API-method is called more than once by the component’s client(s), the spaces of
the provided call arguments (e.g. the space of a) in the different API-calls have to match. So if in the first
call, a is an IntBox, in the second call, it has to be an IntBox as well.
This is because of a possible dependency of the component’s variables (see below) on these “input-spaces”. We
will try to further loosen this restriction in future releases
and only require it if RLgraph knows for sure that the space of the argument in question is being used to define
variables of the component.

Variables

Variables are the data that each component can store for the lifetime of the computation graph. A variable has a
fixed data type and shape, hence a fixed Rlgraph space. As a matter of fact, variables are often created directly
from Space instances via the practical Space.get_variable() method.

Variables can be accessed inside graph functions (see below) and can be read as well as be written to.
Examples for variables are:

	The buffer of a memory that stores a certain part of a memory record, for example an image (rank-3 uint8 tensor).

	A memory component’s index pointer (which record should we retrieve next?). This is usually a single int scalar.

	The weights matrix of some neural network layer. This is always a rank-2 float tensor.

Variables are created in a component’s create_variables method, which gets called automatically, once all input
spaces of the component (all its API-method arguments’ spaces) are known to the RLgraph build system. In the
next paragraph, we will explain how this stage of “input-completeness” is reached and why it’s important for
the component.

Input Spaces and the concept of “input-completeness”

Let’s look at a Component’s API-method and its variable generating code to understand the concept of
“input-completeness”.

inside some component class ...
...
@rlgraph_api
def insert(self, record):
 # Call a graph function that will take care of the assignment.
 return self._graph_fn_insert(record)

def create_variables(input_spaces, action_space=None):
 """
 Override this base class method to create variables based on the
 spaces that are underlying each API-method's call argument
 (in our case, this is only the call arg "records" of the "insert" API-method).
 """
 # Lookup the input space by the name of the API-method's call arg ("record").
 in_space = input_spaces["record"]
 self.storage_buffer = in_space.get_variable(trainable=False, ... other options)

A component reaches input-completeness, if all spaces to all its unique call parameters (by their names) are known.
A space for a call argument (e.g. record) gets known once the respective API-method (here: insert) gets called by a
client (a parent component). Only the outermost component, also called the “root”, needs its spaces to be provided
manually by the user, since its API-methods are only executed (called) at graph-execution time.

If a component has many API-methods, each with the only call argument a , which share the call parameter’s names (e.g. a component has API-methods:
one(a, b))

A client of this component (a parent component or the RL agent directly) will eventually make a call to the
component’s API-method insert(). At that point, the space of the record argument will be known. If the component
above only has that one API-method, and hence only that one API-method call argument (record), it is then
input-complete.

Graph Functions

Every component serves a certain computation purpose within a machine learning model. A neural network layer maps
input data to output data via, for example, a matrix-matrix multiplication (and adding maybe some bias). An optimizer
calculates the gradient of a loss function over the weights of a trainable layer and applies the resulting gradients
in a certain way to these weights. All these calculation steps happen inside a component’s graph functions, the
only place in RLgraph, were we can find backend specific code, such as calls to tensorflow’s static graph building
functions or computations on pytorch tensors.

Unlike API-methods, graph functions can only be called from within the same component that owns them (not by parents
or grandparents of the component). These calls happen from within the component’s different API-methods (similar to
calling another API-method).

Graph functions are - similar to API-methods - regular python class methods, but must be tagged with the @graph_fn
decorator as follows:

inside some component class ...
...
@graph_fn
def _graph_fn_do_some_computation(self, a, b):
 # All backend-specific code in RLgraph goes into graph functions.
 if get_backend() == "tf":
 # Do some computation in tf.
 some_result = tf.add(a, b)

 elif get_backend() == "pytorch":
 # Do some computation in pytorch.
 some_result = a + b

 return some_result

Inside a graph function, any type of backend specific computations are allowed to be coded. A graph function then
returns the result of the computation or many results as a tuple.

 [image:]

How to Write Your Own Custom Component

In the following, we will build an entire component from scratch in RLgraph, including the component’s API-methods,
its graph functions, and its variable generating code.

A Simple Single-Value Memory Component

Our component, once done, will look as follows:

[image: The custom memory component we are about to build from scratch.]
Above: The custom memory component we are about to build from scratch.

We are building a simplistic memory that holds some value (or a tensor of values) in a variable stored under
self.value. Clients of our component will be able to read the current value via the API-method get_value, overwrite
it via set_value, and do some simple calculation by calling get_value_plus_n (which is not shown in the figure
above), which adds some number (n) to the current value of the variable and returns the result of that computation.

Class Definition and Constructor

First we will create a new python file called my_component.py and will import all necessary RLgraph modules
as well as tensorflow, which will be the only supported backend of this component for simplicity reasons.

import tensorflow as tf
from rlgraph.components.component import Component
from rlgraph.utils.decorators import rlgraph_api, graph_fn

Define our new Component class.
class MyComponent(Component):
 # Ctor.
 def __init__(self, initial_value=1.0, scope="my-component", **kwargs):
 # It is good practice to pass through **kwargs to parent class.
 super(MyComponent, self).__init__(scope, **kwargs)
 # Store the initial value.
 # This will be assigned equally to all items in the memory.
 self.initial_value = initial_value
 # Placeholder for our variable (will be created inside self.create_variables).
 self.value = None

API-Methods and Input Spaces

Let’s now define all our API-methods. Each of these will simply make a call to an underlying graph function
in which the actual magic is implemented. Note that all API-methods must be tagged with the @rlgraph_api decorator:

@rlgraph_api
def get_value(self):
 return self._graph_fn_get()

@rlgraph_api
def set_value(self, value):
 return self._graph_fn_set(value)

@rlgraph_api
def get_value_plus_n(self, n):
 return self._graph_fn_get_value_plus_n(n)

Note that the set of our API-method call arguments is now: value and n. The spaces of both value and n must
thus be known to the RLgraph build system, before the create_variables() method will be called automatically.
In case our component is the root component, the user will have to provide these spaces manually in the Agent (which
is the owner of the root). Remember that this manual space is always necessary for all of the root component’s API-method call arguments).

The Single Value Variable

Now it’s time to specify, which variables our component needs. All variables should be generated inside a component’s
create_variables method, which is called automatically, once all input spaces are known. In our case, the input
space for the value arg is important as that signals us, which type of variable we want (rank, dtype, etc.).
We can apply some restrictions to this space by implementing the check_input_spaces() method, which gets
called (automatically) right before create_variables. For example:

Add this to the import section at the top of the file
from rlgraph.spaces import ContainerSpace

Then, in our component class ...

def check_input_spaces(self, input_spaces, action_space=None):
 # Make sure, we have a non-container space.
 in_space = input_spaces["value"]
 assert not isinstance(in_space, ContainerSpace), "ERROR: No containers allowed!"

The above code will make sure that only simple spaces are allowed as our variable space (e.g. a FloatBox with
some arbitrary shape).

Now that we have sanity checked our variable space, let’s write the code to create the variable:

def create_variables(self, input_spaces, action_space=None):
 in_space = input_spaces["value"]
 # Create the variable as non-trainable and with
 # the given initial value (from the c'tor).
 self.value = in_space.get_variable(
 trainable=False, initializer=self.initial_value
)

Under the Hood Coding: Our Graph Functions

Finally, we need to implement the actual under-the-hood computation magic using our favourite machine learning backend.
We currently support tensorflow [https://www.tensorflow.org/] and pytorch [https://pytorch.org/],
but if you are interested in other backends, we would love to receive your contributions on this and PRs (see
here for our contrib guidelines [https://github.com/rlgraph/rlgraph/blob/master/contrib/README.md]).

We will implement three graph functions, exactly those three that we have already been calling from within our
API-methods. Graph functions usually start with _graph_fn_ and we should stick to that convention here as well.
The exact code for all three is shown below. Note the sudden change from abstract glue-code like coding to actual
tensorflow code. Graph functions can return one or more (a tuple) tensorflow ops. But we will also later learn
(when we write an entire algorithm from scratch) how to bundle
and nest these ops into more complex tuple and dict structures and return these to the API-method caller.

@graph_fn
def _graph_fn_get(self):
 # Note: read_value() is the tf way to make sure a read op is added to the graph.
 # (remember that self.value is an actual tf.Variable).
 return self.value.read_value()

@graph_fn
def _graph_fn_set(self, value):
 # We use the RLgraph `Component.assign_variable()` helper here.
 assign_op = self.assign_variable(self.value, value)
 # Make sure the value gets assigned via the no_op trick
 # (no_op is now dependent on the assignment op).
 with tf.control_dependencies([assign_op]):
 return tf.no_op()

@graph_fn
def _graph_fn_get_value_plus_n(self, n):
 # Simple tf.add operation as return value.
 return tf.add(self.value, n)

It might seem a little strange that our API-methods in this example are only very thin wrappers around the
actual computations (graph functions). However, in a later chapter on
agent implementations, we will see how useful API-methods really are,
not for wrapping calls to graph functions, but to delegate and connect different graph functions and also other
API-methods with each other.

 [image:]

The Complete Code for Our Custom Component

Here you can see the complete code for our custom component. On the next page, we will talk about how we can test
this component via RLgraph’s special ComponentTest class.

import tensorflow as tf
from rlgraph.components.component import Component
from rlgraph.utils.decorators import rlgraph_api, graph_fn
To be able to do input-space sanity checking.
from rlgraph.spaces import ContainerSpace

Define our new Component class.
class MyComponent(Component):
 # Ctor.
 def __init__(self, initial_value=1.0, scope="my-component", **kwargs):
 # It is good practice to pass through **kwargs to parent class.
 super(MyComponent, self).__init__(scope, **kwargs)
 # Store the initial value.
 # This will be assigned equally to all items in the memory.
 self.initial_value = initial_value
 # Placeholder for our variable (will be created inside self.create_variables).
 self.value = None

@rlgraph_api
def get_value(self):
 return self._graph_fn_get()

@rlgraph_api
def set_value(self, value):
 return self._graph_fn_set(value)

@rlgraph_api
def get_value_plus_n(self, n):
 return self._graph_fn_get_value_plus_n(n)

def check_input_spaces(self, input_spaces, action_space=None):
 # Make sure, we have a non-container space.
 in_space = input_spaces["value"]
 assert not isinstance(in_space, ContainerSpace), "ERROR: No containers allowed!"

def create_variables(self, input_spaces, action_space=None):
 in_space = input_spaces["value"]
 # Create the variable as non-trainable and with
 # the given initial value (from the c'tor).
 self.value = in_space.get_variable(
 trainable=False, initializer=self.initial_value
)

@graph_fn
def _graph_fn_get(self):
 # Note: read_value() is the tf way to make sure a read op is added to the graph.
 # (remember that self.value is an actual tf.Variable).
 return self.value.read_value()

@graph_fn
def _graph_fn_set(self, value):
 # We use the RLgraph `Component.assign_variable()` helper here.
 assign_op = self.assign_variable(self.value, value)
 # Make sure the value gets assigned via the no_op trick
 # (no_op is now dependent on the assignment op).
 with tf.control_dependencies([assign_op]):
 return tf.no_op()

@graph_fn
def _graph_fn_get_value_plus_n(self, n):
 # Simple tf.add operation as return value.
 return tf.add(self.value, n)

 [image:]

How to Test Your Components

Now we will show you, how one can very easily test a single component via RLgraph’s testing system.
As an example, we will use our custom component built from scratch in
this chapter here.

Writing a New Test Case with Python’s Unittest Module

Test 1: Writing a New Value

Test 2: Retrieving the Value

Test 3: Testing for the Correct Computation Results

 [image:]

RLgraph API Reference Documentation

	1. RLgraph Core API

	2. Space Classes and Space Utilities
	2.1. Space Base Class Reference

	2.2. Box Spaces

	2.3. Container Spaces

	2.4. Space Utilities

	3. Agent Classes
	3.1. Agent Base Class Reference

	3.2. DQN Agent

	3.3. ApeX Agent

	3.4. IMPALA Agent

	4. Components Reference
	4.1. Component Base Class Reference

	4.2. Action Adapters
	4.2.1. Action Adapter Base Class

	4.2.2. Dueling Action Adapter

	4.2.3. Baseline Action Adapter

	4.3. Distributions
	4.3.1. Distribution Base Class

	4.3.2. Normal Distribution

	4.3.3. Bernoulli Distribution

	4.3.4. Categorical Distribution

	4.3.5. Beta Distribution

	4.4. Explorations
	4.4.1. Exploration Base Class

	4.4.2. EpsilonExploration Helper Class

	4.5. Helper Components Reference

	4.6. Layer Classes
	4.6.1. Layer Base Class

	4.6.2. Preprocessing Layers

	4.6.3. Neural Network Layers

	4.6.4. String/Text Processing Layers

	4.7. Loss Functions
	4.7.1. Loss Function Base Class

	4.7.2. DQN Loss Function

	4.7.3. IMPALA Loss Function

	4.8. Memories
	4.8.1. Memory Base Class

	4.8.2. ReplayMemory

	4.8.3. PrioritizedReplay

	4.8.4. FIFOQueue

	4.8.5. QueueRunner

	4.9. Neural Networks
	4.9.1. Stack Class

	4.9.2. PreprocessorStack

	4.9.3. DictPreprocessorStack

	4.9.4. NeuralNetwork

	4.9.5. Policy

	4.9.6. ActorComponent

	4.10. Optimizers
	4.10.1. Optimizer Base Class

	4.10.2. Local Optimizer

	4.10.3. Horovod Optimizer

	4.11. RLgraph Components from Select Papers Reference

	4.12. Queues Reference

	5. Environment Classes
	5.1. Environment Base Class Reference

	5.2. Random Environment

	5.3. GridWorld Environments

	5.4. OpenAI Gym Environments

	5.5. DeepMind Lab Environments

 [image:]

1. RLgraph Core API

	
rlgraph.get_backend()

	

	
rlgraph.get_distributed_backend()

	

 [image:]

2. Space Classes and Space Utilities

2.1. Space Base Class Reference

	
class rlgraph.spaces.space.Space(add_batch_rank=False, add_time_rank=False, time_major=False)

	Bases: rlgraph.utils.specifiable.Specifiable

Space class (based on and compatible with openAI Spaces).
Provides a classification for state-, action-, reward- and other spaces.

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
flat_dim

	
	Returns:

	int: The length of a flattened vector derived from this Space.

	
flatten(mapping=None, custom_scope_separator='/', scope_separator_at_start=True, scope_=None, list_=None)

	A mapping function to flatten this Space into an OrderedDict whose only values are
primitive (non-container) Spaces. The keys are created automatically from Dict keys and
Tuple indexes.

	Args:

	
	mapping (Optional[callable]): A mapping function that takes a flattened auto-generated key and a primitive

	Space and converts the primitive Space to something else. Default is pass through.

	custom_scope_separator (str): The separator to use in the returned dict for scopes.

	Default: ‘/’.

	scope_separator_at_start (bool): Whether to add the scope-separator also at the beginning.

	Default: True.

scope_ (Optional[str]): For recursive calls only. Used for automatic key generation.

list_ (Optional[list]): For recursive calls only. The list so far.

	Returns:

	
	OrderedDict: The OrderedDict using auto-generated keys and containing only primitive Spaces

	(or whatever the mapping function maps the primitive Spaces to).

	
force_batch(samples)

	Makes sure that samples is always returned with a batch rank no matter whether
it already has one or not (in which case this method returns a batch of 1) or
whether this Space has a batch rank or not.

	Args:

	samples (any): The samples to be batched. If already batched, return as-is.

	Returns:

	any: The batched sample.

	
get_shape(with_batch_rank=False, with_time_rank=False, time_major=None, **kwargs)

	Returns the shape of this Space as a tuple with certain additional ranks at the front (batch) or the back
(e.g. categories).

	Args:

	
	with_batch_rank (Union[bool,int]): Whether to include a possible batch-rank as None at 0th (or 1st)

	position. If with_batch_rank is an int (e.g. -1), the possible batch-rank is returned as that number
(instead of None) at the 0th (or 1st if time_major is True) position.
Default: False.

	with_time_rank (Union[bool,int]): Whether to include a possible time-rank as None at 1st (or 0th)

	position. If with_time_rank is an int, the possible time-rank is returned as that number
(instead of None) at the 1st (or 0th if time_major is True) position.
Default: False.

time_major (bool): Overwrites self.time_major if not None. Default: None (use self.time_major).

	Returns:

	tuple: The shape of this Space as a tuple.

	
get_variable(name, is_input_feed=False, add_batch_rank=None, add_time_rank=None, time_major=False, is_python=False, local=False, **kwargs)

	Returns a backend-specific variable/placeholder that matches the space’s shape.

	Args:

	name (str): The name for the variable.

	is_input_feed (bool): Whether the returned object should be an input placeholder,

	instead of a full variable.

	add_batch_rank (Optional[bool,int]): If True, will add a 0th (or 1st) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_batch_rank.
Default: None.

	add_time_rank (Optional[bool,int]): If True, will add a 1st (or 0th) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_time_rank.
Default: None.

	time_major (bool): Only relevant if both add_batch_rank and add_time_rank are True.

	Will make the time-rank the 0th rank and the batch-rank the 1st rank.
Otherwise, batch-rank will be 0th and time-rank will be 1st.
Default: False.

is_python (bool): Whether to create a python-based variable (list) or a backend-specific one.

	local (bool): Whether the variable must not be shared across the network.

	Default: False.

	Keyword Args:

	To be passed on to backend-specific methods (e.g. trainable, initializer, etc..).

	Returns:

	any: A Tensor Variable/Placeholder.

	
rank

	
	Returns:

	int: The rank of the Space not including batch- or time-ranks
(e.g. 3 for a space with shape=(10, 7, 5)).

	
sample(size=None, fill_value=None)

	Uniformly randomly samples an element from this space. This is for testing purposes, e.g. to simulate
a random environment.

	Args:

	
	size (Optional[int]): The number of samples or batch size to sample.

	If size is > 1: Returns a batch of size samples with the 0th rank being the batch rank
(even if self.has_batch_rank is False).
If size is None or (1 and self.has_batch_rank is False): Returns a single sample w/o batch rank.
If size is 1 and self.has_batch_rank is True: Returns a single sample w/ the batch rank.

	fill_value (Optional[any]): The number or initializer specifier to fill the sample. Can be used to create

	a (non-random) sample with a certain fill value in all elements.
TODO: support initializer spec-strings like ‘normal’, ‘truncated_normal’, etc..

	Returns:

	any: The sampled element(s).

	
shape

	
	Returns:

	tuple: The shape of this Space as a tuple. Without batch or time ranks.

	
with_batch_rank(add_batch_rank=True)

	Returns a deepcopy of this Space, but with has_batch_rank set to the provided value.

	Args:

	add_batch_rank (Union[bool,int]): The fixed size of the batch-rank or True or False.

	Returns:

	Space: The deepcopy of this Space, but with has_batch_rank set to True.

	
with_extra_ranks(add_batch_rank=True, add_time_rank=True, time_major=False)

	Returns a deepcopy of this Space, but with has_batch_rank and has_time_rank
set to the provided value. Use None to leave whatever value this Space has already.

	Args:

	
	add_batch_rank (Optional[bool]): If True or False, set the has_batch_rank property of the new Space

	to this value. Use None to leave the property as is.

	add_time_rank (Optional[bool]): If True or False, set the has_time_rank property of the new Space

	to this value. Use None to leave the property as is.

	time_major (Optional[bool]): Whether the time-rank should be the 0th rank (instead of the 1st by default).

	Not important if either batch_rank or time_rank are not set. Use None to leave the property as is.

	Returns:

	Space: The deepcopy of this Space, but with has_batch_rank set to True.

	
with_time_rank(add_time_rank=True)

	Returns a deepcopy of this Space, but with has_time_rank set to the provided value.

	Args:

	add_time_rank (Union[bool,int]): The fixed size of the time-rank or True or False.

	Returns:

	Space: The deepcopy of this Space, but with has_time_rank set to True.

	
zeros(size=None)

	
	Args:

	size (Optional): Same as Space.sample().

	Returns:

	np.ndarray: size zero samples where all values are zero and have the correct type.

2.2. Box Spaces

	
class rlgraph.spaces.box_space.BoxSpace(low, high, shape=None, add_batch_rank=False, add_time_rank=False, time_major=False, dtype=<class 'numpy.float32'>)

	Bases: rlgraph.spaces.space.Space

A box in R^n with a shape tuple of len n. Each dimension may be bounded.

	
bounds

	

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
flat_dim

	Returns:
int: The length of a flattened vector derived from this Space.

	
force_batch(samples)

	Makes sure that samples is always returned with a batch rank no matter whether
it already has one or not (in which case this method returns a batch of 1) or
whether this Space has a batch rank or not.

	Args:

	samples (any): The samples to be batched. If already batched, return as-is.

	Returns:

	any: The batched sample.

	
get_shape(with_batch_rank=False, with_time_rank=False, time_major=None, **kwargs)

	Returns the shape of this Space as a tuple with certain additional ranks at the front (batch) or the back
(e.g. categories).

	Args:

	
	with_batch_rank (Union[bool,int]): Whether to include a possible batch-rank as None at 0th (or 1st)

	position. If with_batch_rank is an int (e.g. -1), the possible batch-rank is returned as that number
(instead of None) at the 0th (or 1st if time_major is True) position.
Default: False.

	with_time_rank (Union[bool,int]): Whether to include a possible time-rank as None at 1st (or 0th)

	position. If with_time_rank is an int, the possible time-rank is returned as that number
(instead of None) at the 1st (or 0th if time_major is True) position.
Default: False.

time_major (bool): Overwrites self.time_major if not None. Default: None (use self.time_major).

	Returns:

	tuple: The shape of this Space as a tuple.

	
get_variable(name, is_input_feed=False, add_batch_rank=None, add_time_rank=None, time_major=None, is_python=False, local=False, **kwargs)

	Returns a backend-specific variable/placeholder that matches the space’s shape.

	Args:

	name (str): The name for the variable.

	is_input_feed (bool): Whether the returned object should be an input placeholder,

	instead of a full variable.

	add_batch_rank (Optional[bool,int]): If True, will add a 0th (or 1st) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_batch_rank.
Default: None.

	add_time_rank (Optional[bool,int]): If True, will add a 1st (or 0th) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_time_rank.
Default: None.

	time_major (bool): Only relevant if both add_batch_rank and add_time_rank are True.

	Will make the time-rank the 0th rank and the batch-rank the 1st rank.
Otherwise, batch-rank will be 0th and time-rank will be 1st.
Default: False.

is_python (bool): Whether to create a python-based variable (list) or a backend-specific one.

	local (bool): Whether the variable must not be shared across the network.

	Default: False.

	Keyword Args:

	To be passed on to backend-specific methods (e.g. trainable, initializer, etc..).

	Returns:

	any: A Tensor Variable/Placeholder.

	
zeros(size=None)

	
	Args:

	size (Optional): Same as Space.sample().

	Returns:

	np.ndarray: size zero samples where all values are zero and have the correct type.

	
class rlgraph.spaces.int_box.IntBox(low=None, high=None, shape=None, dtype='int32', **kwargs)

	Bases: rlgraph.spaces.box_space.BoxSpace

A box in Z^n (only integers; each coordinate is bounded)
e.g. an image (w x h x RGB) where each color channel pixel can be between 0 and 255.

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
flat_dim_with_categories

	If we were to flatten this Space and also consider each single possible int value (assuming global bounds)
as one category, what would the dimension have to be to represent this Space.

	
get_shape(with_batch_rank=False, with_time_rank=False, **kwargs)

	
	Keyword Args:

	
	with_category_rank (bool): Whether to include a category rank for this IntBox (if all dims have equal

	lower/upper bounds).

	
sample(size=None, fill_value=None)

	Uniformly randomly samples an element from this space. This is for testing purposes, e.g. to simulate
a random environment.

	Args:

	
	size (Optional[int]): The number of samples or batch size to sample.

	If size is > 1: Returns a batch of size samples with the 0th rank being the batch rank
(even if self.has_batch_rank is False).
If size is None or (1 and self.has_batch_rank is False): Returns a single sample w/o batch rank.
If size is 1 and self.has_batch_rank is True: Returns a single sample w/ the batch rank.

	fill_value (Optional[any]): The number or initializer specifier to fill the sample. Can be used to create

	a (non-random) sample with a certain fill value in all elements.
TODO: support initializer spec-strings like ‘normal’, ‘truncated_normal’, etc..

	Returns:

	any: The sampled element(s).

	
class rlgraph.spaces.float_box.FloatBox(low=None, high=None, shape=None, dtype='float32', **kwargs)

	Bases: rlgraph.spaces.box_space.BoxSpace

	
sample(size=None, fill_value=None)

	Uniformly randomly samples an element from this space. This is for testing purposes, e.g. to simulate
a random environment.

	Args:

	
	size (Optional[int]): The number of samples or batch size to sample.

	If size is > 1: Returns a batch of size samples with the 0th rank being the batch rank
(even if self.has_batch_rank is False).
If size is None or (1 and self.has_batch_rank is False): Returns a single sample w/o batch rank.
If size is 1 and self.has_batch_rank is True: Returns a single sample w/ the batch rank.

	fill_value (Optional[any]): The number or initializer specifier to fill the sample. Can be used to create

	a (non-random) sample with a certain fill value in all elements.
TODO: support initializer spec-strings like ‘normal’, ‘truncated_normal’, etc..

	Returns:

	any: The sampled element(s).

	
class rlgraph.spaces.bool_box.BoolBox(shape=None, **kwargs)

	Bases: rlgraph.spaces.box_space.BoxSpace

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
sample(size=None, fill_value=None)

	Uniformly randomly samples an element from this space. This is for testing purposes, e.g. to simulate
a random environment.

	Args:

	
	size (Optional[int]): The number of samples or batch size to sample.

	If size is > 1: Returns a batch of size samples with the 0th rank being the batch rank
(even if self.has_batch_rank is False).
If size is None or (1 and self.has_batch_rank is False): Returns a single sample w/o batch rank.
If size is 1 and self.has_batch_rank is True: Returns a single sample w/ the batch rank.

	fill_value (Optional[any]): The number or initializer specifier to fill the sample. Can be used to create

	a (non-random) sample with a certain fill value in all elements.
TODO: support initializer spec-strings like ‘normal’, ‘truncated_normal’, etc..

	Returns:

	any: The sampled element(s).

	
class rlgraph.spaces.text_box.TextBox(shape=(), **kwargs)

	Bases: rlgraph.spaces.box_space.BoxSpace

A text box in TXT^n where the shape means the number of text chunks in each dimension.

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
sample(size=None, fill_value=None)

	Uniformly randomly samples an element from this space. This is for testing purposes, e.g. to simulate
a random environment.

	Args:

	
	size (Optional[int]): The number of samples or batch size to sample.

	If size is > 1: Returns a batch of size samples with the 0th rank being the batch rank
(even if self.has_batch_rank is False).
If size is None or (1 and self.has_batch_rank is False): Returns a single sample w/o batch rank.
If size is 1 and self.has_batch_rank is True: Returns a single sample w/ the batch rank.

	fill_value (Optional[any]): The number or initializer specifier to fill the sample. Can be used to create

	a (non-random) sample with a certain fill value in all elements.
TODO: support initializer spec-strings like ‘normal’, ‘truncated_normal’, etc..

	Returns:

	any: The sampled element(s).

2.3. Container Spaces

	
class rlgraph.spaces.containers.ContainerSpace(add_batch_rank=False, add_time_rank=False, time_major=False)

	Bases: rlgraph.spaces.space.Space

A simple placeholder class for Spaces that contain other Spaces.

	
sample(size=None, horizontal=False)

	Child classes must overwrite this one again with support for the horizontal parameter.

	Args:

	
	horizontal (bool): False: Within this container, sample each child-space size times.

	True: Produce size single containers in an np.array of len size.

	
class rlgraph.spaces.containers.Dict(spec=None, **kwargs)

	Bases: rlgraph.spaces.containers.ContainerSpace, dict [https://docs.python.org/3/library/stdtypes.html#dict]

A Dict space (an ordered and keyed combination of n other spaces).
Supports nesting of other Dict/Tuple spaces (or any other Space types) inside itself.

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
dtype

	

	
flat_dim

	Returns:
int: The length of a flattened vector derived from this Space.

	
force_batch(samples)

	Makes sure that samples is always returned with a batch rank no matter whether
it already has one or not (in which case this method returns a batch of 1) or
whether this Space has a batch rank or not.

	Args:

	samples (any): The samples to be batched. If already batched, return as-is.

	Returns:

	any: The batched sample.

	
get_shape(with_batch_rank=False, with_time_rank=False, time_major=None, with_category_rank=False)

	Returns the shape of this Space as a tuple with certain additional ranks at the front (batch) or the back
(e.g. categories).

	Args:

	
	with_batch_rank (Union[bool,int]): Whether to include a possible batch-rank as None at 0th (or 1st)

	position. If with_batch_rank is an int (e.g. -1), the possible batch-rank is returned as that number
(instead of None) at the 0th (or 1st if time_major is True) position.
Default: False.

	with_time_rank (Union[bool,int]): Whether to include a possible time-rank as None at 1st (or 0th)

	position. If with_time_rank is an int, the possible time-rank is returned as that number
(instead of None) at the 1st (or 0th if time_major is True) position.
Default: False.

time_major (bool): Overwrites self.time_major if not None. Default: None (use self.time_major).

	Returns:

	tuple: The shape of this Space as a tuple.

	
get_variable(name, is_input_feed=False, add_batch_rank=None, add_time_rank=None, time_major=None, **kwargs)

	Returns a backend-specific variable/placeholder that matches the space’s shape.

	Args:

	name (str): The name for the variable.

	is_input_feed (bool): Whether the returned object should be an input placeholder,

	instead of a full variable.

	add_batch_rank (Optional[bool,int]): If True, will add a 0th (or 1st) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_batch_rank.
Default: None.

	add_time_rank (Optional[bool,int]): If True, will add a 1st (or 0th) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_time_rank.
Default: None.

	time_major (bool): Only relevant if both add_batch_rank and add_time_rank are True.

	Will make the time-rank the 0th rank and the batch-rank the 1st rank.
Otherwise, batch-rank will be 0th and time-rank will be 1st.
Default: False.

is_python (bool): Whether to create a python-based variable (list) or a backend-specific one.

	local (bool): Whether the variable must not be shared across the network.

	Default: False.

	Keyword Args:

	To be passed on to backend-specific methods (e.g. trainable, initializer, etc..).

	Returns:

	any: A Tensor Variable/Placeholder.

	
rank

	Returns:
int: The rank of the Space not including batch- or time-ranks
(e.g. 3 for a space with shape=(10, 7, 5)).

	
sample(size=None, horizontal=False)

	Child classes must overwrite this one again with support for the horizontal parameter.

	Args:

	
	horizontal (bool): False: Within this container, sample each child-space size times.

	True: Produce size single containers in an np.array of len size.

	
shape

	Returns:
tuple: The shape of this Space as a tuple. Without batch or time ranks.

	
zeros(size=None)

	
	Args:

	size (Optional): Same as Space.sample().

	Returns:

	np.ndarray: size zero samples where all values are zero and have the correct type.

	
class rlgraph.spaces.containers.Tuple(*components, **kwargs)

	Bases: rlgraph.spaces.containers.ContainerSpace, tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

A Tuple space (an ordered sequence of n other spaces).
Supports nesting of other container (Dict/Tuple) spaces inside itself.

	
contains(sample)

	Checks whether this space contains the given sample. This is more for testing purposes.

	Args:

	sample: The element to check.

	Returns:

	bool: Whether sample is a valid member of this space.

	
dtype

	

	
flat_dim

	Returns:
int: The length of a flattened vector derived from this Space.

	
force_batch(samples)

	Makes sure that samples is always returned with a batch rank no matter whether
it already has one or not (in which case this method returns a batch of 1) or
whether this Space has a batch rank or not.

	Args:

	samples (any): The samples to be batched. If already batched, return as-is.

	Returns:

	any: The batched sample.

	
get_shape(with_batch_rank=False, with_time_rank=False, time_major=None, with_category_rank=False)

	Returns the shape of this Space as a tuple with certain additional ranks at the front (batch) or the back
(e.g. categories).

	Args:

	
	with_batch_rank (Union[bool,int]): Whether to include a possible batch-rank as None at 0th (or 1st)

	position. If with_batch_rank is an int (e.g. -1), the possible batch-rank is returned as that number
(instead of None) at the 0th (or 1st if time_major is True) position.
Default: False.

	with_time_rank (Union[bool,int]): Whether to include a possible time-rank as None at 1st (or 0th)

	position. If with_time_rank is an int, the possible time-rank is returned as that number
(instead of None) at the 1st (or 0th if time_major is True) position.
Default: False.

time_major (bool): Overwrites self.time_major if not None. Default: None (use self.time_major).

	Returns:

	tuple: The shape of this Space as a tuple.

	
get_variable(name, is_input_feed=False, add_batch_rank=None, add_time_rank=None, time_major=None, **kwargs)

	Returns a backend-specific variable/placeholder that matches the space’s shape.

	Args:

	name (str): The name for the variable.

	is_input_feed (bool): Whether the returned object should be an input placeholder,

	instead of a full variable.

	add_batch_rank (Optional[bool,int]): If True, will add a 0th (or 1st) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_batch_rank.
Default: None.

	add_time_rank (Optional[bool,int]): If True, will add a 1st (or 0th) rank (None) to

	the created variable. If it is an int, will add that int (-1 means None).
If None, will use the Space’s default value: self.has_time_rank.
Default: None.

	time_major (bool): Only relevant if both add_batch_rank and add_time_rank are True.

	Will make the time-rank the 0th rank and the batch-rank the 1st rank.
Otherwise, batch-rank will be 0th and time-rank will be 1st.
Default: False.

is_python (bool): Whether to create a python-based variable (list) or a backend-specific one.

	local (bool): Whether the variable must not be shared across the network.

	Default: False.

	Keyword Args:

	To be passed on to backend-specific methods (e.g. trainable, initializer, etc..).

	Returns:

	any: A Tensor Variable/Placeholder.

	
rank

	Returns:
int: The rank of the Space not including batch- or time-ranks
(e.g. 3 for a space with shape=(10, 7, 5)).

	
sample(size=None, horizontal=False)

	Child classes must overwrite this one again with support for the horizontal parameter.

	Args:

	
	horizontal (bool): False: Within this container, sample each child-space size times.

	True: Produce size single containers in an np.array of len size.

	
shape

	Returns:
tuple: The shape of this Space as a tuple. Without batch or time ranks.

	
zeros(size=None)

	
	Args:

	size (Optional): Same as Space.sample().

	Returns:

	np.ndarray: size zero samples where all values are zero and have the correct type.

2.4. Space Utilities

	
rlgraph.spaces.space_utils.check_space_equivalence(space1, space2)

	Compares the two input Spaces for equivalence and returns the more generic Space of the two.
The more generic Space is the one that has the properties has_batch_rank and/or has _time_rank set (instead of
hard values in these ranks).
E.g.: FloatBox((64,)) is equivalent with FloatBox((), +batch-rank). The latter will be returned.

NOTE: FloatBox((2,)) and FloatBox((3,)) are NOT equivalent.

	Args:

	space1 (Space): The 1st Space to compare.
space2 (Space): The 2nd Space to compare.

	Returns:

	
	Union[Space,False]: False is the two spaces are not equivalent. The more generic Space of the two if they are

	equivalent.

	
rlgraph.spaces.space_utils.get_list_registry(from_space, capacity=None, initializer=0, flatten=True, add_batch_rank=False)

	Creates a list storage for a space by providing an ordered dict mapping space names
to empty lists.

	Args:

	from_space: Space to create registry from.
capacity (Optional[int]): Optional capacity to initalize list.
initializer (Optional(any)): Optional initializer for list if capacity is not None.
flatten (bool): Whether to produce a FlattenedDataOp with auto-keys.

	add_batch_rank (Optional[bool,int]): If from_space is given and is True, will add a 0th rank (None) to

	the created variable. If it is an int, will add that int instead of None.
Default: False.

	Returns:

	dict: Container dict mapping spaces to empty lists.

	
rlgraph.spaces.space_utils.get_space_from_op(op)

	Tries to re-create a Space object given some DataOp.
This is useful for shape inference when passing a Socket’s ops through a GraphFunction and
auto-inferring the resulting shape/Space.

	Args:

	op (DataOp): The op to create a corresponding Space for.

	Returns:

	Space: The inferred Space object.

	
rlgraph.spaces.space_utils.sanity_check_space(space, allowed_types=None, non_allowed_types=None, must_have_batch_rank=None, must_have_time_rank=None, must_have_batch_or_time_rank=False, must_have_categories=None, num_categories=None, rank=None)

	Sanity checks a given Space for certain criteria and raises exceptions if they are not met.

	Args:

	space (Space): The Space object to check.
allowed_types (Optional[List[type]]): A list of types that this Space must be an instance of.
non_allowed_types (Optional[List[type]]): A list of type that this Space must not be an instance of.

	must_have_batch_rank (Optional[bool]): Whether the Space must (True) or must not (False) have the

	has_batch_rank property set to True. None, if it doesn’t matter.

	must_have_time_rank (Optional[bool]): Whether the Space must (True) or must not (False) have the

	has_time_rank property set to True. None, if it doesn’t matter.

	must_have_batch_or_time_rank (Optional[bool]): Whether the Space must (True) or must not (False) have either

	the has_batch_rank or the has_time_rank property set to True.

	must_have_categories (Optional[bool]): For IntBoxes, whether the Space must (True) or must not (False) have

	global bounds with num_categories > 0. None, if it doesn’t matter.

	num_categories (Optional[int,tuple]): An int or a tuple (min,max) range within which the Space’s

	num_categories rank must lie. Only valid for IntBoxes.
None if it doesn’t matter.

	rank (Optional[int,tuple]): An int or a tuple (min,max) range within which the Space’s rank must lie.

	None if it doesn’t matter.

	Raises:

	RLGraphError: Various RLGraphErrors, if any of the conditions is not met.

 [image:]

3. Agent Classes

3.1. Agent Base Class Reference

	
class rlgraph.agents.agent.Agent(state_space, action_space, discount=0.98, preprocessing_spec=None, network_spec=None, internal_states_space=None, action_adapter_spec=None, exploration_spec=None, execution_spec=None, optimizer_spec=None, observe_spec=None, update_spec=None, summary_spec=None, saver_spec=None, auto_build=True, name='agent')

	Bases: rlgraph.utils.specifiable.Specifiable

Generic agent defining RLGraph-API operations and parses and sanitizes configuration specs.

	
build(build_options=None)

	Builds this agent. This method call only be called if the agent parameter “auto_build”
was set to False.

	Args:

	build_options (Optional[dict]): Optional build options, see build doc.

	
call_api_method(op, inputs=None, return_ops=None)

	Utility method to call any desired api method on the graph, identified via output socket.
Delegate this call to the RLGraph graph executor.

	Args:

	op (str): Name of the api method.

	inputs (Optional[dict,np.array]): Dict specifying the provided api_methods for (key=input space name,

	values=the values that should go into this space (e.g. numpy arrays)).

	Returns:

	any: Result of the op call.

	
define_api_methods(policy_scope, pre_processor_scope, optimizer_scope, *params)

	Can be used to specify and then self.define_api_method the Agent’s CoreComponent’s API methods.
Each agent implements this to build its algorithm logic.

	Args:

	policy_scope (str): The global scope of the Policy within the Agent.
pre_processor_scope (str): The global scope of the PreprocessorStack within the Agent.
params (any): Params to be used freely by child Agent implementations.

	
export_graph(filename=None)

	Any algorithm defined as a full-graph, as opposed to mixed (mixed Python and graph control flow)
should be able to export its graph for deployment.

	Args:

	filename (str): Export path. Depending on the backend, different filetypes may be required.

	
get_action(states, internals=None, use_exploration=True, apply_preprocessing=True, extra_returns=None)

	Returns action(s) for the passed state(s). If states is a single state, returns a single action, otherwise,
returns a batch of actions, where batch-size = number of states passed in.

	Args:

	states (Union[dict,np.ndarray]): States dict/tuple or numpy array.
internals (Union[dict,np.ndarray]): Internal states dict/tuple or numpy array.

	use_exploration (bool): If False, no exploration or sampling may be applied

	when retrieving an action.

	apply_preprocessing (bool): If True, apply any state preprocessors configured to the action. Set to

	false if all pre-processing is handled externally both for acting and updating.

	extra_returns (Optional[Set[str]]): Optional set of Agent-specific strings for additional return

	values (besides the actions). All Agents must support “preprocessed_states”.

	Returns:

	
	any: Action(s) as dict/tuple/np.ndarray (depending on self.action_space).

	Optional: The preprocessed states as a 2nd return value.

	
get_policy_weights()

	Returns all weights relevant for the agent’s policy for syncing purposes.

	Returns:

	any: Weights and optionally weight meta data for this model.

	
import_observations(observations)

	Bulk imports observations, potentially using device pre-fetching. Can be optionally
implemented by agents requiring pre-training.

	Args:

	observations (dict): Dict or list of observation data.

	
load_model(path=None)

	Load model from serialized format.

	Args:

	path (str): Path to checkpoint directory.

	
observe(preprocessed_states, actions, internals, rewards, next_states, terminals, env_id=None)

	Observes an experience tuple or a batch of experience tuples. Note: If configured,
first uses buffers and then internally calls _observe_graph() to actually run the computation graph.
If buffering is disabled, this just routes the call to the respective _observe_graph() method of the
child Agent.

	Args:

	preprocessed_states (Union[dict, ndarray]): Preprocessed states dict or array.
actions (Union[dict, ndarray]): Actions dict or array containing actions performed for the given state(s).
internals (Union[list]): Internal state(s) returned by agent for the given states.Must be

empty list if no internals available.

rewards (float): Scalar reward(s) observed.
terminals (bool): Boolean indicating terminal.
next_states (Union[dict, ndarray]): Preprocessed next states dict or array.
env_id (Optional[str]): Environment id to observe for. When using vectorized execution and

buffering, using environment ids is necessary to ensure correct trajectories are inserted.
See SingleThreadedWorker for example usage.

	
preprocess_states(states)

	Applies the agent’s preprocessor to one or more states, e.g. to preprocess external data
before inserting to memory without acting. Returns identity if no preprocessor defined.

	Args:

	states (np.array): State(s) to preprocess.

	Returns:

	np.array: Preprocessed states.

	
reset()

	Must be implemented to define some reset behavior (before starting a new episode).
This could include resetting the preprocessor and other Components.

	
reset_env_buffers(env_id=None)

	Resets an environment buffer for buffered observe calls.

	Args:

	env_id (Optional[str]): Environment id to reset. Defaults to a default environment if None provided.

	
set_policy_weights(weights)

	Sets policy weights of this agent, e.g. for external syncing purporses.

	Args:

	weights (any): Weights and optionally meta data to update depending on the backend.

	Raises:

	ValueError if weights do not match graph weights in shapes and types.

	
store_model(path=None, add_timestep=True)

	Store model using the backend’s check-pointing mechanism.

	Args:

	path (str): Path to model directory.

	add_timestep (bool): Indiciates if current training step should be appended to exported model.

	If false, may override previous checkpoints.

	
terminate()

	Terminates the Agent, so it will no longer be usable.
Things that need to be cleaned up should be placed into this function, e.g. closing sessions
and other open connections.

	
update(batch=None)

	Performs an update on the computation graph either via externally experience or
by sampling from an internal memory.

	Args:

	
	batch (Optional[dict]): Optional external data batch to use for update. If None, the

	agent should be configured to sample internally.

	Returns:

	float: The loss value calculated in this update.

3.2. DQN Agent

	
class rlgraph.agents.dqn_agent.DQNAgent(double_q=True, dueling_q=True, huber_loss=False, n_step=1, memory_spec=None, store_last_memory_batch=False, store_last_q_table=False, **kwargs)

	Bases: rlgraph.agents.agent.Agent

A collection of DQN algorithms published in the following papers:
[1] Human-level control through deep reinforcement learning. Mnih, Kavukcuoglu, Silver et al. - 2015
[2] Deep Reinforcement Learning with Double Q-learning. v. Hasselt, Guez, Silver - 2015
[3] Dueling Network Architectures for Deep Reinforcement Learning, Wang et al. - 2016
[4] https://en.wikipedia.org/wiki/Huber_loss

	
define_api_methods(policy_scope, pre_processor_scope, optimizer_scope, *sub_components)

	Can be used to specify and then self.define_api_method the Agent’s CoreComponent’s API methods.
Each agent implements this to build its algorithm logic.

	Args:

	policy_scope (str): The global scope of the Policy within the Agent.
pre_processor_scope (str): The global scope of the PreprocessorStack within the Agent.
params (any): Params to be used freely by child Agent implementations.

	
get_action(states, internals=None, use_exploration=True, apply_preprocessing=True, extra_returns=None)

	
	Args:

	
	extra_returns (Optional[Set[str],str]): Optional string or set of strings for additional return

	values (besides the actions). Possible values are:
- ‘preprocessed_states’: The preprocessed states after passing the given states through the
preprocessor stack.
- ‘internal_states’: The internal states returned by the RNNs in the NN pipeline.
- ‘used_exploration’: Whether epsilon- or noise-based exploration was used or not.

	Returns:

	
	tuple or single value depending on extra_returns:

	
	action

	the preprocessed states

	
reset()

	Resets our preprocessor, but only if it contains stateful PreprocessLayer Components (meaning
the PreprocessorStack has at least one variable defined).

	
update(batch=None)

	Performs an update on the computation graph either via externally experience or
by sampling from an internal memory.

	Args:

	
	batch (Optional[dict]): Optional external data batch to use for update. If None, the

	agent should be configured to sample internally.

	Returns:

	float: The loss value calculated in this update.

3.3. ApeX Agent

	
class rlgraph.agents.apex_agent.ApexAgent(memory_spec=None, **kwargs)

	Bases: rlgraph.agents.dqn_agent.DQNAgent

Ape-X is a DQN variant designed for large scale distributed execution where many workers
share a distributed prioritized experience replay.

Paper: https://arxiv.org/abs/1803.00933

The distinction to standard DQN is mainly that Ape-X needs to provide additional operations
to enable external updates of priorities. Ape-X also enables per default dueling and double
DQN.

	
get_td_loss(batch)

	Utility method that just returns the td-loss from a batch without
applying an update.

	Args:

	batch (dict): Input batch.

	Returns:

	Tuple: Total loss and loss per item.

	
update(batch=None)

	Performs an update on the computation graph either via externally experience or
by sampling from an internal memory.

	Args:

	
	batch (Optional[dict]): Optional external data batch to use for update. If None, the

	agent should be configured to sample internally.

	Returns:

	float: The loss value calculated in this update.

3.4. IMPALA Agent

	
class rlgraph.agents.impala_agent.IMPALAAgent(discount=0.99, fifo_queue_spec=None, architecture='large', environment_spec=None, weight_pg=None, weight_baseline=None, weight_entropy=None, worker_sample_size=100, dynamic_batching=False, **kwargs)

	Bases: rlgraph.agents.agent.Agent

An Agent implementing the IMPALA algorithm described in [1]. The Agent contains both learner and actor
API-methods, which will be put into the graph depending on the type ().

	[1] IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures - Espeholt, Soyer,

	Munos et al. - 2018 (https://arxiv.org/abs/1802.01561)

	
default_environment_spec = {'frameskip': 4, 'level_id': 'seekavoid_arena_01', 'observations': ['RGB_INTERLEAVED', 'INSTR'], 'type': 'deepmind_lab'}

	

	
default_internal_states_space = Tuple(("Floatbox((256,) <class 'numpy.float32'>)", "Floatbox((256,) <class 'numpy.float32'>)"))

	

	
define_api_methods(*sub_components)

	Can be used to specify and then self.define_api_method the Agent’s CoreComponent’s API methods.
Each agent implements this to build its algorithm logic.

	Args:

	policy_scope (str): The global scope of the Policy within the Agent.
pre_processor_scope (str): The global scope of the PreprocessorStack within the Agent.
params (any): Params to be used freely by child Agent implementations.

	
define_api_methods_actor(env_stepper, env_output_splitter, internal_states_slicer, merger, states_dict_splitter, fifo_queue)

	Defines the API-methods used by an IMPALA actor. Actors only step through an environment (n-steps at
a time), collect the results and push them into the FIFO queue. Results include: The actions actually
taken, the discounted accumulated returns for each action, the probability of each taken action according to
the behavior policy.

	Args:

	
	env_stepper (EnvironmentStepper): The EnvironmentStepper Component to setp through the Env n steps

	in a single op call.

fifo_queue (FIFOQueue): The FIFOQueue Component used to enqueue env sample runs (n-step).

	
define_api_methods_learner(fifo_output_splitter, fifo_queue, states_dict_splitter, transpose_states, transpose_terminals, transpose_action_probs, staging_area, preprocessor, policy, loss_function, optimizer)

	Defines the API-methods used by an IMPALA learner. Its job is basically: Pull a batch from the
FIFOQueue, split it up into its components and pass these through the loss function and into the optimizer for
a learning update.

	Args:

	fifo_queue (FIFOQueue): The FIFOQueue Component used to enqueue env sample runs (n-step).

	splitter (ContainerSplitter): The DictSplitter Component to split up a batch from the queue along its

	items.

policy (Policy): The Policy Component, which to update.
loss_function (IMPALALossFunction): The IMPALALossFunction Component.
optimizer (Optimizer): The optimizer that we use to calculate an update and apply it.

	
define_api_methods_single(fifo_output_splitter, fifo_queue, queue_runner, transpose_actions, transpose_rewards, transpose_terminals, transpose_action_probs, preprocessor, staging_area, concat, policy, loss_function, optimizer)

	

	
get_action(states, internal_states=None, use_exploration=True, extra_returns=None)

	Returns action(s) for the passed state(s). If states is a single state, returns a single action, otherwise,
returns a batch of actions, where batch-size = number of states passed in.

	Args:

	states (Union[dict,np.ndarray]): States dict/tuple or numpy array.
internals (Union[dict,np.ndarray]): Internal states dict/tuple or numpy array.

	use_exploration (bool): If False, no exploration or sampling may be applied

	when retrieving an action.

	apply_preprocessing (bool): If True, apply any state preprocessors configured to the action. Set to

	false if all pre-processing is handled externally both for acting and updating.

	extra_returns (Optional[Set[str]]): Optional set of Agent-specific strings for additional return

	values (besides the actions). All Agents must support “preprocessed_states”.

	Returns:

	
	any: Action(s) as dict/tuple/np.ndarray (depending on self.action_space).

	Optional: The preprocessed states as a 2nd return value.

	
update(batch=None)

	Performs an update on the computation graph either via externally experience or
by sampling from an internal memory.

	Args:

	
	batch (Optional[dict]): Optional external data batch to use for update. If None, the

	agent should be configured to sample internally.

	Returns:

	float: The loss value calculated in this update.

4. Components Reference

	4.1. Component Base Class Reference

	4.2. Action Adapters
	4.2.1. Action Adapter Base Class

	4.2.2. Dueling Action Adapter

	4.2.3. Baseline Action Adapter

	4.3. Distributions
	4.3.1. Distribution Base Class

	4.3.2. Normal Distribution

	4.3.3. Bernoulli Distribution

	4.3.4. Categorical Distribution

	4.3.5. Beta Distribution

	4.4. Explorations
	4.4.1. Exploration Base Class

	4.4.2. EpsilonExploration Helper Class

	4.5. Helper Components Reference

	4.6. Layer Classes
	4.6.1. Layer Base Class

	4.6.2. Preprocessing Layers

	4.6.3. Neural Network Layers
	4.6.3.1. Activation Functions

	4.6.3.2. NNLayer Base Class

	4.6.3.3. Concat Layer

	4.6.3.4. Conv2D Layer

	4.6.3.5. Dense Layer

	4.6.3.6. LSTM Layer

	4.6.3.7. MaxPool2D Layer

	4.6.3.8. Residual Layer

	4.6.4. String/Text Processing Layers

	4.7. Loss Functions
	4.7.1. Loss Function Base Class

	4.7.2. DQN Loss Function

	4.7.3. IMPALA Loss Function

	4.8. Memories
	4.8.1. Memory Base Class

	4.8.2. ReplayMemory

	4.8.3. PrioritizedReplay

	4.8.4. FIFOQueue

	4.8.5. QueueRunner

	4.9. Neural Networks
	4.9.1. Stack Class

	4.9.2. PreprocessorStack

	4.9.3. DictPreprocessorStack

	4.9.4. NeuralNetwork

	4.9.5. Policy

	4.9.6. ActorComponent

	4.10. Optimizers
	4.10.1. Optimizer Base Class

	4.10.2. Local Optimizer

	4.10.3. Horovod Optimizer

	4.11. RLgraph Components from Select Papers Reference

	4.12. Queues Reference

 [image:]

4.1. Component Base Class Reference

	
class rlgraph.components.component.Component(*sub_components, **kwargs)

	Bases: rlgraph.utils.specifiable.Specifiable

Base class for a graph component (such as a layer, an entire function approximator, a memory, an optimizers, etc..).

A component can contain other components and/or its own graph-logic (e.g. tf ops).
A component’s sub-components are connected to each other via in- and out-Sockets (similar to LEGO blocks
and deepmind’s sonnet).

This base class implements the interface to add sub-components, create connections between
different sub-components and between a sub-component and this one and between this component
and an external component.

A component also has a variable registry, the ability to save the component’s structure and variable-values to disk,
and supports adding its graph_fns to the overall computation graph.

	
add_components(*components, **kwargs)

	Adds sub-components to this one.

	Args:

	components (List[Component]): The list of Component objects to be added into this one.

	Keyword Args:

	
	expose_apis (Optional[Set[str]]): An optional set of strings with API-methods of the child component

	that should be exposed as the parent’s API via a simple wrapper API-method for the parent (that
calls the child’s API-method).

#exposed_must_be_complete (bool): Whether the exposed API methods must be input-complete or not.

	
static assign_variable(ref, value)

	Assigns a variable to a value.

	Args:

	ref (any): The variable to assign to.
value (any): The value to use for the assignment.

	Returns:

	Optional[op]: None or the graph operation representing the assginment.

	
call_count = 0

	

	
call_times = []

	

	
check_input_completeness()

	Checks whether this Component is “input-complete” and stores the result in self.input_complete.
Input-completeness is reached (only once and then it stays that way) if all API-methods of this component
(whose must_be_complete field is not set to False) have all their input Spaces defined.

	Returns:

	bool: Whether this Component is input_complete or not.

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
check_variable_completeness()

	Checks, whether this Component is input-complete AND all our sub-Components are input-complete.
At that point, all variables are defined and we can run the _variables graph_fn.

	Returns:

	bool: Whether this Component is “variables-complete”.

	
copy(name=None, scope=None, device=None, trainable=None, reuse_variable_scope=None, reuse_variable_scope_for_sub_components=None)

	Copies this component and returns a new component with possibly another name and another scope.
The new component has its own variables (they are not shared with the variables of this component as they
will be created after this copy anyway, during the build phase).
and is initially not connected to any other component.

	Args:

	name (str): The name of the new Component. If None, use the value of scope.
scope (str): The scope of the new Component. If None, use the same scope as this component.
device (str): The device of the new Component. If None, use the same device as this one.

	trainable (Optional[bool]): Whether to make all variables in this component trainable or not. Use None

	for no specific preference.

reuse_variable_scope (Optional[str]): If not None, variables of the copy will be shared under this scope.

	reuse_variable_scope_for_sub_components (Optional[str]): If not None, variables only of the sub-components

	of the copy will be shared under this scope.

	Returns:

	Component: The copied component object.

	
create_summary(name, values, type_='histogram')

	Creates a summary op (and adds it to the graph).
Skips those, whose full name does not match self.summary_regexp.

	Args:

	
	name (str): The name for the summary. This has to match self.summary_regexp.

	The name should not contain a “summary”-prefix or any global scope information
(both will be added automatically by this method).

values (op): The op to summarize.

	type_ (str): The summary type to create. Currently supported are:

	“histogram”, “scalar” and “text”.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

	
get_all_sub_components(list_=None, level_=0)

	Returns all sub-Components (including self) sorted by their nesting-level (… grand-children before children
before parents).

	Args:

	list_ (Optional[List[Component]])): A list of already collected components to append to.
level_ (int): The slot indicating the Component level depth in list_ at which we are currently.

	Returns:

	List[Component]: A list with all the sub-components in self and self itself.

	
get_number_of_allowed_inputs(api_method_name)

	Returns the number of allowed input args for a given API-method.

	Args:

	api_method_name (str): The API-method to analyze.

	Returns:

	
	Tuple[int,int]: A tuple with the range (lower/upper bound) of allowed input args for the given API-method.

	An upper bound of None means that the API-method accepts any number of input args equal or larger
than the lower bound.

	
get_parents()

	Returns a list of parent and grand-parents of this component.

	Returns:

	List[Component]: A list (may be empty if this component has no parents) of all parent and grand-parents.

	
get_sub_component_by_global_scope(scope)

	Returns a sub-Component (or None if not found) by scope. The sub-coponent’s scope should be given
as global scope of the sub-component (not local scope with respect to this Component).

	Args:

	scope (str): The global scope of the sub-Component we are looking for.

	Returns:

	Component: The sub-Component with the given global scope if found, None if not found.

	
get_sub_component_by_name(name)

	Returns a sub-Component (or None if not found) by its name (local scope). The sub-Component must be a direct
sub-Component of self.

	Args:

	name (str): The name (local scope) of the sub-Component we are looking for.

	Returns:

	Component: The sub-Component with the given name if found, None if not found.

	Raises:

	RLGraphError: If a sub-Component by that name could not be found.

	
get_variable(name='', shape=None, dtype='float', initializer=None, trainable=True, from_space=None, add_batch_rank=False, add_time_rank=False, time_major=False, flatten=False, local=False, use_resource=False)

	Generates or returns a variable to use in the selected backend.
The generated variable is automatically registered in this component’s (and all parent components’)
variable-registry under its global-scoped name.

	Args:

	name (str): The name under which the variable is registered in this component.

shape (Optional[tuple]): The shape of the variable. Default: empty tuple.

dtype (Union[str,type]): The dtype (as string) of this variable.

initializer (Optional[any]): Initializer for this variable.

	trainable (bool): Whether this variable should be trainable. This will be overwritten, if the Component

	has its own trainable property set to either True or False.

	from_space (Optional[Space,str]): Whether to create this variable from a Space object

	(shape and dtype are not needed then). The Space object can be given directly or via the name
of the in-Socket holding the Space.

	add_batch_rank (Optional[bool,int]): If True and from_space is given, will add a 0th (1st) rank (None) to

	the created variable. If it is an int, will add that int instead of None.
Default: False.

	add_time_rank (Optional[bool,int]): If True and from_space is given, will add a 1st (0th) rank (None) to

	the created variable. If it is an int, will add that int instead of None.
Default: False.

	time_major (bool): Only relevant if both add_batch_rank and add_time_rank are True.

	Will make the time-rank the 0th rank and the batch-rank the 1st rank.
Otherwise, batch-rank will be 0th and time-rank will be 1st.
Default: False.

flatten (bool): Whether to produce a FlattenedDataOp with auto-keys.

	local (bool): Whether the variable must not be shared across the network.

	Default: False.

	use_resource (bool): Whether to use the new tf resource-type variables.

	Default: False.

	Returns:

	
	DataOp: The actual variable (dependent on the backend) or - if from

	a ContainerSpace - a FlattenedDataOp or ContainerDataOp depending on the Space.

	
get_variables(*names, **kwargs)

	Utility method to get one or more component variable(s) by name(s).

	Args:

	names (List[str]): Lookup name strings for variables. None for all.

	Keyword Args:

	
	collections (set): A set of collections to which the variables have to belong in order to be returned here.

	Default: tf.GraphKeys.TRAINABLE_VARIABLES

	custom_scope_separator (str): The separator to use in the returned dict for scopes.

	Default: ‘/’.

	global_scope (bool): Whether to use keys in the returned dict that include the global-scopes of the

	Variables. Default: False.

	Returns:

	dict: A dict mapping variable names to their get_backend variables.

	
get_variables_by_name(*names, **kwargs)

	Retrieves this components variables by name.

	Args:

	names (List[str]): List of names of Variable to return.

	Keyword Args:

	
	custom_scope_separator (str): The separator to use in the returned dict for scopes.

	Default: ‘/’.

	global_scope (bool): Whether to use keys in the returned dict that include the global-scopes of the

	Variables. Default: False.

	Returns:

	dict: Dict containing the requested names as keys and variables as values.

	
propagate_scope(sub_component)

	Fixes all the sub-Component’s (and its sub-Component’s) global_scopes.

	Args:

	
	sub_component (Optional[Component]): The sub-Component object whose global_scope needs to be updated.

	Use None for this Component itself.

	
propagate_sub_component_properties(properties, component=None)

	Recursively updates properties of component and its sub-components.

	Args:

	
	properties (dict): Dict with names of properties and their values to recursively update

	sub-components with.

component (Optional([Component])): Component to recursively update. Uses self if None.

	
propagate_summary(key_)

	Propagates a single summary op of this Component to its parents’ summaries registries.

	Args:

	key_ (str): The lookup key for the summary to propagate.

	
propagate_variables(keys=None)

	Propagates all variable from this Component to its parents’ variable registries.

	Args:

	
	keys (Optional[List[str]]): An optional list of variable names to propagate. Should only be used in

	internal, recursive calls to this same method.

	
static read_variable(variable, indices=None)

	Reads a variable.

	Args:

	variable (DataOp): The variable whose value to read.
indices (Optional[np.ndarray,tf.Tensor]): Indices (if any) to fetch from the variable.

	Returns:

	any: Variable values.

	
register_api_methods_and_graph_fns()

	Detects all methods of the Component that should be registered as API-methods for
this Component and complements self.api_methods and self.api_method_inputs.
Goes by the @api decorator before each API-method or graph_fn that should be
auto-thin-wrapped by an API-method.

	
register_variables(*variables)

	Adds already created Variables to our registry. This could be useful if the variables are not created
by our own self.get_variable method, but by some backend-specific object (e.g. tf.layers).
Also auto-creates summaries (regulated by self.summary_regexp) for the given variables.

	Args:

	# TODO check if we warp PytorchVariable
variables (Union[PyTorchVariable, SingleDataOp]): The Variable objects to register.

	
remove_sub_component_by_name(name)

	Removes a sub-component from this one by its name. Thereby sets the parent_component property of the
removed Component to None.
Raises an error if the sub-component does not exist.

	Args:

	name (str): The name of the sub-component to be removed.

	Returns:

	Component: The removed component.

	
static reset_profile()

	Sets profiling values to 0.

	
static scatter_update_variable(variable, indices, updates)

	Updates a variable. Optionally returns the operation depending on the backend.

	Args:

	variable (any): Variable to update.
indices (array): Indices to update.
updates (any): Update values.

	Returns:

	Optional[op]: The graph operation representing the update (or None).

	
sub_component_by_name(scope_name)

	Returns a sub-component of this component by its name.

	Args:

	scope_name (str): Name of the component. This is typically its scope.

	Returns:

	Component: Sub-component if it exists.

	Raises:

	ValueError: Error if no sub-component with this name exists.

	
when_input_complete(input_spaces=None, action_space=None, device=None, summary_regexp=None)

	Wrapper that calls both self.check_input_spaces and self.create_variables in sequence and passes
the dict with the input_spaces for each argument (key=arg name) and the action_space as parameter.

	Args:

	
	input_spaces (Optional[Dict[str,Space]]): A dict with Space/shape information.

	keys=in-argument name (str); values=the associated Space.
Use None to take self.api_method_inputs instead.

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and connect

	more Components (which rely on this information). This eliminates the need to pass the action Space
information into many Components’ constructors.

device (str): The device to use for the variables generated.

	summary_regexp (Optional[str]): A regexp (str) that defines, which summaries should be generated

	and registered.

 [image:]

4.2. Action Adapters

4.2.1. Action Adapter Base Class

	
class rlgraph.components.action_adapters.action_adapter.ActionAdapter(action_space, add_units=0, units=None, weights_spec=None, biases_spec=None, activation=None, scope='action-adapter', **kwargs)

	Bases: rlgraph.components.component.Component

A Component that cleans up a neural network’s flat output and gets it ready for parameterizing a
Distribution Component.
Processing steps include:
- Sending the raw, flattened NN output through a Dense layer whose number of units matches the flattened
action space.
- Reshaping (according to the action Space).
- Translating the reshaped outputs (logits) into probabilities (by softmaxing) and log-probabilities (log).

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
get_action_layer_output(*args, **kwargs)

	

	
get_logits(*args, **kwargs)

	

	
get_logits_probabilities_log_probs(*args, **kwargs)

	

4.2.2. Dueling Action Adapter

	
class rlgraph.components.action_adapters.dueling_action_adapter.DuelingActionAdapter(units_state_value_stream, units_advantage_stream, weights_spec_state_value_stream=None, biases_spec_state_value_stream=None, activation_state_value_stream='relu', weights_spec_advantage_stream=None, biases_spec_advantage_stream=None, activation_advantage_stream='relu', scope='dueling-action-adapter', **kwargs)

	Bases: rlgraph.components.action_adapters.action_adapter.ActionAdapter

An ActionAdapter that adds a dueling Q calculation to the flattened output of a neural network.

	API:

	
	get_dueling_output(nn_output) (Tuple[SingleDataOp x 3]): The state-value, advantage-values

	(reshaped) and q-values (reshaped) after passing action_layer_output through the dueling layer.

	
get_action_layer_output(*args, **kwargs)

	

	
get_logits_probabilities_log_probs(*args, **kwargs)

	

4.2.3. Baseline Action Adapter

	
class rlgraph.components.action_adapters.baseline_action_adapter.BaselineActionAdapter(scope='baseline-action-adapter', **kwargs)

	Bases: rlgraph.components.action_adapters.action_adapter.ActionAdapter

An ActionAdapter that adds 1 node to its action layer for an additional state-value output per batch item.

	API:

	get_state_values_and_logits(nn_output) (Tuple[SingleDataOp x 2]): The state-value and action logits (reshaped).

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
get_logits(*args, **kwargs)

	

	
get_logits_probabilities_log_probs(*args, **kwargs)

	

	
get_state_values_and_logits(*args, **kwargs)

	

 [image:]

4.3. Distributions

4.3.1. Distribution Base Class

	
class rlgraph.components.distributions.distribution.Distribution(scope='distribution', **kwargs)

	Bases: rlgraph.components.component.Component

A distribution wrapper class that can incorporate a backend-specific distribution object that gets its parameters
from an external source (e.g. a NN).

	API:

	get_distribution(parameters): The backend-specific distribution object.
sample_stochastic(parameters): Returns a stochastic sample from the distribution.
sample_deterministic(parameters): Returns the max-likelihood value (deterministic) from the distribution.

	draw(parameters, max_likelihood): Draws a sample from the distribution (if max_likelihood is True,

	this is will be a deterministic draw, otherwise a stochastic sample).

entropy(parameters): The entropy value of the distribution.
log_prob(parameters): The log probabilities for given values.

	kl_divergence(parameters, other_parameters): The Kullback-Leibler Divergence between a Distribution and

	another one.

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
draw(parameters, max_likelihood=True)

	

	
entropy(parameters)

	

	
kl_divergence(*args, **kwargs)

	

	
log_prob(*args, **kwargs)

	

	
sample_deterministic(parameters)

	

	
sample_stochastic(parameters)

	

4.3.2. Normal Distribution

	
class rlgraph.components.distributions.normal.Normal(scope='normal', **kwargs)

	Bases: rlgraph.components.distributions.distribution.Distribution

A Gaussian Normal distribution object defined by a tuple: mean, variance,
which is the same as “loc_and_scale”.

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

4.3.3. Bernoulli Distribution

	
class rlgraph.components.distributions.bernoulli.Bernoulli(scope='bernoulli', **kwargs)

	Bases: rlgraph.components.distributions.distribution.Distribution

A Bernoulli distribution object defined by a single value p, the probability for True (rather than False).

4.3.4. Categorical Distribution

	
class rlgraph.components.distributions.categorical.Categorical(scope='categorical', **kwargs)

	Bases: rlgraph.components.distributions.distribution.Distribution

A categorical distribution object defined by a n values {p0, p1, …} that add up to 1, the probabilities
for picking one of the n categories.

4.3.5. Beta Distribution

	
class rlgraph.components.distributions.beta.Beta(scope='beta', **kwargs)

	Bases: rlgraph.components.distributions.distribution.Distribution

A Beta distribution is defined on the interval [0, 1] and parameterized by shape parameters
alpha and beta (also called concentration parameters).

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

 [image:]

4.4. Explorations

4.4.1. Exploration Base Class

	
class rlgraph.components.explorations.exploration.Exploration(epsilon_spec=None, noise_spec=None, scope='exploration', **kwargs)

	Bases: rlgraph.components.component.Component

A Component that can be plugged on top of a Policy’s output to produce action choices.
It includes noise and/or epsilon-based exploration options as well as an out-Socket to draw actions from
the Policy’s distribution - either by sampling or by deterministically choosing the max-likelihood value.

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

4.4.2. EpsilonExploration Helper Class

	
class rlgraph.components.explorations.epsilon_exploration.EpsilonExploration(decay_spec=None, scope='epsilon-exploration', **kwargs)

	Bases: rlgraph.components.component.Component

A component to handle epsilon-exploration functionality. It takes the current time step and outputs a bool
on whether to explore (uniformly random) or not (greedy or sampling).
The time step is used by a epsilon-decay component to determine the current epsilon value between 1.0
and 0.0. The result of this decay is the probability, with which we output “True” (meaning: do explore),
vs “False” (meaning: do not explore).

API:
ins:

time_step (int): The current time step.

	outs:

	
	do_explore (bool): The decision whether to explore (do_explore=True; pick uniformly randomly) or

	whether to use a sample (or max-likelihood value) from a distribution (do_explore=False).

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
do_explore(*args, **kwargs)

	

 [image:]

4.5. Helper Components Reference

	
class rlgraph.components.helpers.MemSegmentTree(values, capacity, operator=<built-in function add>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

In-memory Segment tree for prioritized replay.

Note: The pure TensorFlow segment tree is much slower because variable updating is expensive,
and in scenarios like Ape-X, memory and update are separated processes, so there is little to be gained
from inserting into the graph.

	
get(index)

	Reads an item from the segment tree.

	Args:

	index (int):

Returns: The element.

	
get_min_value(start=0, stop=None)

	Returns min value of storage variable.

	
get_sum(start=0, stop=None)

	Returns sum value of storage variable.

	
index_of_prefixsum(prefix_sum)

	Identifies the highest index which satisfies the condition that the sum
over all elements from 0 till the index is <= prefix_sum.

	Args:

	prefix_sum .float): Upper bound on prefix we are allowed to select.

	Returns:

	int: Index/indices satisfying prefix sum condition.

	
insert(index, element)

	Inserts an element into the segment tree by determining
its position in the tree.

	Args:

	index (int): Insertion index.
element (any): Element to insert.

	
reduce(start, limit, reduce_op=<built-in function add>)

	Applies an operation to specified segment.

	Args:

	start (int): Start index to apply reduction to.
limit (end): End index to apply reduction to.
reduce_op (Union(operator.add, min, max)): Reduce op to apply.

	Returns:

	Number: Result of reduce operation

	
class rlgraph.components.helpers.SegmentTree(storage_variable, capacity=1048)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

TensorFlow Segment tree for prioritized replay.

	
get(index)

	Reads an item from the segment tree.

	Args:

	index (int):

Returns: The element.

	
get_min_value()

	Returns min value of storage variable.

	
get_sum()

	Returns sum value of storage variable.

	
index_of_prefixsum(prefix_sum)

	Identifies the highest index which satisfies the condition that the sum
over all elements from 0 till the index is <= prefix_sum.

	Args:

	prefix_sum .float): Upper bound on prefix we are allowed to select.

	Returns:

	int: Index/indices satisfying prefix sum condition.

	
insert(index, element, insert_op=<function add>)

	Inserts an element into the segment tree by determining
its position in the tree.

	Args:

	index (int): Insertion index.
element (any): Element to insert.
insert_op (Union(tf.add, tf.minimum, tf, maximum)): Insert operation on the tree.

	
reduce(start, limit, reduce_op=<function add>)

	Applies an operation to specified segment.

	Args:

	start (int): Start index to apply reduction to.
limit (end): End index to apply reduction to.
reduce_op (Union(tf.add, tf.minimum, tf.maximum)): Reduce op to apply.

	Returns:

	Number: Result of reduce operation

	
class rlgraph.components.helpers.SoftMax(scope='softmax', **kwargs)

	Bases: rlgraph.components.component.Component

A simple softmax component that translates logits into probabilities (and log-probabilities).

	API:

	apply(logits) -> returns probabilities (softmaxed) and log-probabilities.

	
class rlgraph.components.helpers.VTraceFunction(rho_bar=1.0, rho_bar_pg=1.0, c_bar=1.0, device='/device:CPU:0', scope='v-trace-function', **kwargs)

	Bases: rlgraph.components.component.Component

A Helper Component that contains a graph_fn to calculate V-trace values from importance ratios (rhos).
Based on [1] and coded analogously to: https://github.com/deepmind/scalable_agent

	[1] IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures - Espeholt, Soyer,

	Munos et al. - 2018 (https://arxiv.org/abs/1802.01561)

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

 [image:]

4.6. Layer Classes

	4.6.1. Layer Base Class

	4.6.2. Preprocessing Layers

	4.6.3. Neural Network Layers
	4.6.3.1. Activation Functions

	4.6.3.2. NNLayer Base Class

	4.6.3.3. Concat Layer

	4.6.3.4. Conv2D Layer

	4.6.3.5. Dense Layer

	4.6.3.6. LSTM Layer

	4.6.3.7. MaxPool2D Layer

	4.6.3.8. Residual Layer

	4.6.4. String/Text Processing Layers

 [image:]

4.6.1. Layer Base Class

	
class rlgraph.components.layers.layer.Layer(**kwargs)

	Bases: rlgraph.components.component.Component

A Layer is a simple Component that implements the apply method with n inputs and m return values.

	API:

	apply(*inputs): Applies the layer’s logic to the inputs and returns one or more result values.

	
get_preprocessed_space(space)

	Returns the Space obtained after pushing the space input through this layer.

	Args:

	space (Space): The incoming Space object.

	Returns:

	Space: The Space after preprocessing.

 [image:]

4.6.2. Preprocessing Layers

	
class rlgraph.components.layers.preprocessing.preprocess_layer.PreprocessLayer(scope='pre-process', **kwargs)

	Bases: rlgraph.components.layers.layer.Layer

A Layer that - additionally to apply - implements the reset API-method.
apply is usually used for preprocessing inputs. reset is used to reset some state information of this
preprocessor (e.g reset/reinitialize a variable).

 [image:]

4.6.3. Neural Network Layers

4.6.3.1. Activation Functions

	
rlgraph.components.layers.nn.activation_functions.get_activation_function(activation_function=None, *other_parameters)

	Returns an activation function (callable) to use in a NN layer.

	Args:

	
	activation_function (Optional[callable,str]): The activation function to lookup. Could be given as:

	
	already a callable (return just that)

	a lookup key (str)

	None: Use linear activation.

other_parameters (any): Possible extra parameter(s) used for some of the activation functions.

	Returns:

	callable: The backend-dependent activation function.

4.6.3.2. NNLayer Base Class

	
class rlgraph.components.layers.nn.nn_layer.NNLayer(**kwargs)

	Bases: rlgraph.components.layers.layer.Layer

A generic NN-layer object implementing the apply graph_fn and offering additional activation function support.
Can be used in the following ways:

	
	Thin wrapper around a backend-specific layer object (normal use case):

	Create the backend layer in the create_variables method and store it under self.layer. Then register
the backend layer’s variables with the RLgraph Component.

	
	Custom layer (with custom computation):

	Create necessary variables in create_variables (e.g. matrices), then override _graph_fn_apply, leaving
self.layer as None.

	
	Single Activation Function:

	Leave self.layer as None and do not override _graph_fn_apply. It will then only apply the activation
function.

	
check_input_spaces(input_spaces, action_space=None)

	Do some sanity checking on the incoming Space:
Must not be Container (for now) and must have a batch rank.

4.6.3.3. Concat Layer

	
class rlgraph.components.layers.nn.concat_layer.ConcatLayer(axis=-1, scope='concat-layer', **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

A simple concatenation layer wrapper. The ConcatLayer is a Layer without sub-components but with n
api_methods and 1 output, where input data is concatenated into one output by its GraphFunction.

	
check_input_spaces(input_spaces, action_space=None)

	Do some sanity checking on the incoming Space:
Must not be Container (for now) and must have a batch rank.

4.6.3.4. Conv2D Layer

	
class rlgraph.components.layers.nn.conv2d_layer.Conv2DLayer(filters, kernel_size, strides, padding='valid', data_format='channels_last', kernel_spec=None, biases_spec=None, **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

A Conv2D NN-layer.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.6.3.5. Dense Layer

	
class rlgraph.components.layers.nn.dense_layer.DenseLayer(units, weights_spec=None, biases_spec=None, **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

A dense (or “fully connected”) NN-layer.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.6.3.6. LSTM Layer

	
class rlgraph.components.layers.nn.lstm_layer.LSTMLayer(units, use_peepholes=False, cell_clip=None, static_loop=False, forget_bias=1.0, parallel_iterations=32, swap_memory=False, time_major=False, **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

An LSTM layer processing an initial internal state vector and a batch of sequences to produce
a final internal state and a batch of output sequences.

	
apply(*args, **kwargs)

	

	
check_input_spaces(input_spaces, action_space=None)

	Do some sanity checking on the incoming Space:
Must not be Container (for now) and must have a batch rank.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.6.3.7. MaxPool2D Layer

	
class rlgraph.components.layers.nn.maxpool2d_layer.MaxPool2DLayer(pool_size, strides, padding='valid', data_format='channels_last', **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

A max-pooling 2D layer.

4.6.3.8. Residual Layer

	
class rlgraph.components.layers.nn.residual_layer.ResidualLayer(residual_unit, repeats=2, scope='residual-layer', **kwargs)

	Bases: rlgraph.components.layers.nn.nn_layer.NNLayer

A residual layer that adds the input value to some calculation. Based on:

[1] Identity Mappings in Deep Residual Networks - He, Zhang, Ren and Sun (Microsoft) 2016
(https://arxiv.org/pdf/1603.05027.pdf)

	API:

	apply(input_) ->

 [image:]

4.6.4. String/Text Processing Layers

	
class rlgraph.components.layers.strings.string_layer.StringLayer(**kwargs)

	Bases: rlgraph.components.layers.layer.Layer

A generic string processing layer object.

	
check_input_spaces(input_spaces, action_space=None)

	Do some sanity checking on the incoming Space:
Must be string type.

 [image:]

4.7. Loss Functions

4.7.1. Loss Function Base Class

	
class rlgraph.components.loss_functions.loss_function.LossFunction(discount=0.98, **kwargs)

	Bases: rlgraph.components.component.Component

A loss function component offers a simple interface into some error/loss calculation function.

	API:

	loss_per_item(*inputs) -> The loss value vector holding single loss values (one per item in a batch).
loss_average(loss_per_item) -> The average value of the input loss_per_item.

	
loss(*args, **kwargs)

	

4.7.2. DQN Loss Function

	
class rlgraph.components.loss_functions.dqn_loss_function.DQNLossFunction(double_q=False, huber_loss=False, importance_weights=False, n_step=1, scope='dqn-loss-function', **kwargs)

	Bases: rlgraph.components.loss_functions.loss_function.LossFunction

The classic 2015 DQN Loss Function:
L = Expectation-over-uniform-batch(r + gamma x max_a’Qt(s’,a’) - Qn(s,a))^2
Where Qn is the “normal” Q-network and Qt is the “target” net (which is a little behind Qn for stability purposes).

	API:

	
	loss_per_item(q_values_s, actions, rewards, terminals, qt_values_sp, q_values_sp=None): The DQN loss per batch

	item.

	
check_input_spaces(input_spaces, action_space=None)

	Do some sanity checking on the incoming Spaces:

	
loss(*args, **kwargs)

	

4.7.3. IMPALA Loss Function

	
class rlgraph.components.loss_functions.impala_loss_function.IMPALALossFunction(discount=0.99, reward_clipping='clamp_one', weight_pg=None, weight_baseline=None, weight_entropy=None, **kwargs)

	Bases: rlgraph.components.loss_functions.loss_function.LossFunction

The IMPALA loss function based on v-trace off-policy policy gradient corrections, described in detail in [1].

The three terms of the loss function are:
1) The policy gradient term:

L[pg] = (rho_pg * advantages) * nabla log(pi(a|s)), where (rho_pg * advantages)=pg_advantages in code below.

	
	The value-function baseline term:

	L[V] = 0.5 (vs - V(xs))^2, such that dL[V]/dtheta = (vs - V(xs)) nabla V(xs)

	
	The entropy regularizer term:

	L[E] = - SUM[all actions a] pi(a|s) * log pi(a|s)

	[1] IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures - Espeholt, Soyer,

	Munos et al. - 2018 (https://arxiv.org/abs/1802.01561)

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
loss(logits_actions_pi, action_probs_mu, values, actions, rewards, terminals)

	API-method that calculates the total loss (average over per-batch-item loss) from the original input to
per-item-loss.

Args: see self._graph_fn_loss_per_item.

	Returns:

	SingleDataOp: The tensor specifying the final loss (over the entire batch).

 [image:]

4.8. Memories

4.8.1. Memory Base Class

	
class rlgraph.components.memories.memory.Memory(capacity=1000, scope='memory', **kwargs)

	Bases: rlgraph.components.component.Component

Abstract memory component.

	API:

	insert_records(records) -> Triggers an insertion of records into the memory.
get_records(num_records) -> Returns num_records records from the memory.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.8.2. ReplayMemory

	
class rlgraph.components.memories.replay_memory.ReplayMemory(capacity=1000, scope='replay-memory', **kwargs)

	Bases: rlgraph.components.memories.memory.Memory

Implements a standard replay memory to sample randomized batches.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.8.3. PrioritizedReplay

	
class rlgraph.components.memories.prioritized_replay.PrioritizedReplay(capacity=1000, alpha=1.0, beta=0.0, scope='prioritized-replay', **kwargs)

	Bases: rlgraph.components.memories.memory.Memory

Implements pure TensorFlow prioritized replay.

	API:

	update_records(indices, update) -> Updates the given indices with the given priority scores.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.8.4. FIFOQueue

	
class rlgraph.components.memories.fifo_queue.FIFOQueue(record_space=None, only_insert_single_records=False, **kwargs)

	Bases: rlgraph.components.memories.memory.Memory

A wrapper for a simple in-graph FIFOQueue.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

4.8.5. QueueRunner

	
class rlgraph.components.memories.queue_runner.QueueRunner(queue, api_method_name, return_slot, env_output_splitter, fifo_input_merger, next_states_slicer, internal_states_slicer, *data_producing_components, **kwargs)

	Bases: rlgraph.components.component.Component

A queue runner that contains n sub-components, of which an API-method is called. The return values are bundled
into a FIFOQueue as inputs. Queue runner uses multi-threading and is started after session creation.

API:
enqueue() -> Returns a noop, but creates the enqueue ops for enqueuing data into the queue and hands these

to the underlying queue-runner object.

 [image:]

4.9. Neural Networks

4.9.1. Stack Class

	
class rlgraph.components.neural_networks.stack.Stack(*sub_components, **kwargs)

	Bases: rlgraph.components.component.Component

A component container stack that incorporates one or more sub-components some of whose API-methods
(default: only apply) are automatically connected with each other (in the sequence the sub-Components are given
in the c’tor), resulting in an API of the Stack.
All sub-components’ API-methods need to match in the number of input and output values. E.g. the third
sub-component’s api-metehod’s number of return values has to match the forth sub-component’s api-method’s number of
input parameters.

	
classmethod from_spec(spec=None, **kwargs)

	Uses the given spec to create an object.
If spec is a dict, an optional “type” key can be used as a “constructor hint” to specify a certain class
of the object.
If spec is not a dict, spec’s value is used directly as the “constructor hint”.

The rest of spec (if it’s a dict) will be used as kwargs for the (to-be-determined) constructor.
Additional keys in **kwargs will always have precedence (overwrite keys in spec (if a dict)).
Also, if the spec-dict or **kwargs contains the special key “_args”, it will be popped from the dict
and used as *args list to be passed separately to the constructor.

The following constructor hints are valid:
- None: Use cls as constructor.
- An already instantiated object: Will be returned as is; no constructor call.
- A string or an object that is a key in cls’s __lookup_classes__ dict: The value in __lookup_classes__

for that key will be used as the constructor.

	A python callable: Use that as constructor.

	
	A string: Either a json filename or the name of a python module+class (e.g. “rlgraph.components.Component”)

	to be Will be used to

	Args:

	spec (Optional[dict]): The specification dict.

	Keyword Args:

	
	kwargs (any): Optional possibility to pass the c’tor arguments in here and use spec as the type-only info.

	Then we can call this like: from_spec([type]?, [**kwargs for ctor])
If spec is already a dict, then kwargs will be merged with spec (overwriting keys in spec) after
“type” has been popped out of spec.
If a constructor of a Specifiable needs an *args list of items, the special key _args can be passed
inside kwargs with a list type value (e.g. kwargs={“_args”: [arg1, arg2, arg3]}).

	Returns:

	The object generated from the spec.

	
rlgraph.components.neural_networks.stack.force_tuple(elements=None, *, to_tuple=True)

	Makes sure elements is returned as a list, whether elements is a single item, already a list, or a tuple.

	Args:

	
	elements (Optional[any]): The inputs as single item, list, or tuple to be converted into a list/tuple.

	If None, returns empty list/tuple.

to_tuple (bool): Whether to use tuple (instead of list).

	Returns:

	
	Union[list,tuple]: All given elements in a list/tuple depending on to_tuple’s value. If elements is None,

	returns an empty list/tuple.

4.9.2. PreprocessorStack

	
class rlgraph.components.neural_networks.preprocessor_stack.PreprocessorStack(*preprocessors, **kwargs)

	Bases: rlgraph.components.neural_networks.stack.Stack

A special Stack that only carries PreprocessLayer Components and bundles all their reset output ops
into one exposed reset output op. Otherwise, behaves like a Stack in feeding the outputs
of one sub-Component to the inputs of the next sub-Component, etc..

	API:

	preprocess(input_): Outputs the preprocessed input after sending it through all sub-Components of this Stack.
reset(): An op to trigger all PreprocessorLayers of this Stack to be reset.

	
get_preprocessed_space(space)

	Returns the Space obtained after pushing the input through all layers of this Stack.

	Args:

	space (Space): The incoming Space object.

	Returns:

	Space: The Space after preprocessing.

	
reset(*args, **kwargs)

	

4.9.3. DictPreprocessorStack

	
class rlgraph.components.neural_networks.dict_preprocessor_stack.DictPreprocessorStack(preprocessors, **kwargs)

	Bases: rlgraph.components.neural_networks.preprocessor_stack.PreprocessorStack

A generic PreprocessorStack that can handle Dict/Tuple Spaces and parallely preprocess different Spaces within
different (and separate) single PreprocessorStack components.
The output is again a dict of preprocessed inputs.

	API:

	preprocess(input_): Outputs the preprocessed input after sending it through all sub-Components of this Stack.
reset(): An op to trigger all PreprocessorStacks of this Vector to be reset.

	
get_preprocessed_space(space)

	Returns the Space obtained after pushing the input through all layers of this Stack.

	Args:

	space (Dict): The incoming Space object.

	Returns:

	Space: The Space after preprocessing.

	
reset(*args, **kwargs)

	

4.9.4. NeuralNetwork

	
class rlgraph.components.neural_networks.neural_network.NeuralNetwork(*layers, **kwargs)

	Bases: rlgraph.components.neural_networks.stack.Stack

A NeuralNetwork is a Stack, in which the apply method is defined either by custom-API-method OR by connecting
through all sub-Components’ apply methods.
In both cases, a dict should be returned with at least the output key set. Possible further keys could
be last_internal_states for RNN-based NNs and other keys.

	
has_rnn()

	

	
rlgraph.components.neural_networks.neural_network.force_tuple(elements=None, *, to_tuple=True)

	Makes sure elements is returned as a list, whether elements is a single item, already a list, or a tuple.

	Args:

	
	elements (Optional[any]): The inputs as single item, list, or tuple to be converted into a list/tuple.

	If None, returns empty list/tuple.

to_tuple (bool): Whether to use tuple (instead of list).

	Returns:

	
	Union[list,tuple]: All given elements in a list/tuple depending on to_tuple’s value. If elements is None,

	returns an empty list/tuple.

4.9.5. Policy

	
class rlgraph.components.neural_networks.policy.Policy(network_spec, action_space=None, action_adapter_spec=None, max_likelihood=True, scope='policy', **kwargs)

	Bases: rlgraph.components.component.Component

A Policy is a wrapper Component that contains a NeuralNetwork, an ActionAdapter and a Distribution Component.

	
get_action(*args, **kwargs)

	

	
get_action_layer_output(*args, **kwargs)

	

	
get_entropy(*args, **kwargs)

	

	
get_logits_probabilities_log_probs(*args, **kwargs)

	

	
get_max_likelihood_action(*args, **kwargs)

	

	
get_nn_output(*args, **kwargs)

	

	
get_stochastic_action(*args, **kwargs)

	

4.9.6. ActorComponent

	
class rlgraph.components.neural_networks.actor_component.ActorComponent(preprocessor_spec, policy_spec, exploration_spec, max_likelihood=None, **kwargs)

	Bases: rlgraph.components.component.Component

A Component that incorporates an entire pipeline from env state to an action choice.
Includes preprocessor, policy and exploration sub-components.

	API:

	get_preprocessed_state_and_action(state, time_step, use_exploration) ->

	
get_preprocessed_state_action_and_action_probs(*args, **kwargs)

	

	
get_preprocessed_state_and_action(*args, **kwargs)

	

 [image:]

4.10. Optimizers

4.10.1. Optimizer Base Class

	
class rlgraph.components.optimizers.optimizer.Optimizer(learning_rate=None, **kwargs)

	Bases: rlgraph.components.component.Component

A component that takes a tuple of variables as in-Sockets and optimizes them according to some loss function
or another criterion or method.

	
get_optimizer_variables()

	Returns this optimizer’s variables. This extra utility function is necessary because
some frameworks like TensorFlow create optimizer variables “late”, e.g. Adam variables,
so they cannot be fetched at graph build time yet.

	Returns:

	list: List of variables.

4.10.2. Local Optimizer

	
class rlgraph.components.optimizers.local_optimizers.AdadeltaOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Adadelta optimizer which adapts learning rate over time:

https://arxiv.org/abs/1212.5701

	
class rlgraph.components.optimizers.local_optimizers.AdagradOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Adaptive gradient optimizer which sets small learning rates for frequently appearing features
and large learning rates for rare features:

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

	
class rlgraph.components.optimizers.local_optimizers.AdamOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Adaptive momentum optimizer:
https://arxiv.org/abs/1412.6980

	
class rlgraph.components.optimizers.local_optimizers.GradientDescentOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Classic gradient descent optimizer:
“Stochastic Estimation of the Maximum of a Regression Function.” - Kiefer and Wolfowitz, 1952

	
class rlgraph.components.optimizers.local_optimizers.LocalOptimizer(learning_rate, clip_grad_norm=None, **kwargs)

	Bases: rlgraph.components.optimizers.optimizer.Optimizer

A local optimizer performs optimization irrespective of any distributed semantics, i.e.
it has no knowledge of other machines and does not implement any communications with them.

	
get_optimizer_variables()

	Returns this optimizer’s variables. This extra utility function is necessary because
some frameworks like TensorFlow create optimizer variables “late”, e.g. Adam variables,
so they cannot be fetched at graph build time yet.

	Returns:

	list: List of variables.

	
class rlgraph.components.optimizers.local_optimizers.NadamOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Nesterov-adaptive momentum optimizer which applies Nesterov’s accelerated gradient to Adam:

http://cs229.stanford.edu/proj2015/054_report.pdf

	
class rlgraph.components.optimizers.local_optimizers.RMSPropOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

RMSProp Optimizer as discussed by Hinton:

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	
class rlgraph.components.optimizers.local_optimizers.SGDOptimizer(learning_rate, **kwargs)

	Bases: rlgraph.components.optimizers.local_optimizers.LocalOptimizer

Stochastic gradient descent optimizer from tf.keras including support for momentum,
learning-rate-decay and Nesterov momentum.

4.10.3. Horovod Optimizer

	
class rlgraph.components.optimizers.horovod_optimizer.HorovodOptimizer(local_optimizer=None, **kwargs)

	Bases: rlgraph.components.optimizers.optimizer.Optimizer

This Optimizer provides a wrapper for the horovod optimizer package:

https://github.com/uber/horovod

Horovod is meant to be used as an alternative to distributed TensorFlow as it implements
communication in a different way, as explained in the Horovod paper:

arXiv:1802.05799

This Horovod Optimizer expects a local LocalOptimizer spec (tensorflow) as input.

 [image:]

4.11. RLgraph Components from Select Papers Reference

 [image:]

4.12. Queues Reference

 [image:]

5. Environment Classes

5.1. Environment Base Class Reference

	
class rlgraph.environments.environment.Environment(state_space, action_space, seed=None)

	Bases: rlgraph.utils.specifiable.Specifiable

An Env class used to run experiment-based RL.

	
render()

	Should render the Environment in its current state. May be implemented or not.

	
reset()

	Resets the state of the environment, returning an initial observation.

	Returns:

	tuple: The Env’s state after the reset.

	
seed(seed=None)

	Sets the random seed of the environment to the given value.

	Args:

	seed (int): The seed to use (default: current epoch seconds).

	Returns:

	int: The seed actually used.

	
step(**kwargs)

	Run one time step of the environment’s dynamics. When the end of an episode is reached, reset() should be
called to reset the environment’s internal state.

	Args:

	
	kwargs (any): The action(s) to be executed by the environment. Actions have to be members of this

	Environment’s action_space (a call to self.action_space.contains(action) must return True)

	Returns:

	
	tuple:

	
	The state s’ after(!) executing the given actions(s).

	The reward received after taking a in s.

	Whether s’ is a terminal state.

	Some Environment specific info.

	
terminate()

	Clean up operation. May be implemented or not.

5.2. Random Environment

	
class rlgraph.environments.random_env.RandomEnv(state_space, action_space, reward_space=None, terminal_prob=0.1, deterministic=False)

	Bases: rlgraph.environments.environment.Environment

An Env producing random states no matter what actions come in.

	
reset()

	Resets the state of the environment, returning an initial observation.

	Returns:

	tuple: The Env’s state after the reset.

	
reset_for_env_stepper()

	

	
seed(seed=None)

	Sets the random seed of the environment to the given value.

	Args:

	seed (int): The seed to use (default: current epoch seconds).

	Returns:

	int: The seed actually used.

	
step(actions=None)

	Run one time step of the environment’s dynamics. When the end of an episode is reached, reset() should be
called to reset the environment’s internal state.

	Args:

	
	kwargs (any): The action(s) to be executed by the environment. Actions have to be members of this

	Environment’s action_space (a call to self.action_space.contains(action) must return True)

	Returns:

	
	tuple:

	
	The state s’ after(!) executing the given actions(s).

	The reward received after taking a in s.

	Whether s’ is a terminal state.

	Some Environment specific info.

	
step_for_env_stepper(actions=None)

	

5.3. GridWorld Environments

	
class rlgraph.environments.grid_world.GridWorld(world='4x4', save_mode=False, reward_function='sparse', state_representation='discr')

	Bases: rlgraph.environments.environment.Environment

A classic grid world where the action space is up,down,left,right and the
field types are:
‘S’ : starting point
‘ ‘ : free space
‘W’ : wall (blocks)
‘H’ : hole (terminates episode) (to be replaced by W in save-mode)
‘F’ : fire (usually causing negative reward)
‘G’ : goal state (terminates episode)
TODO: Create an option to introduce a continuous action space.

	
MAPS = {'16x16': ['S H ', ' HH ', ' FF W W', ' W ', 'WWW FF H ', ' W ', ' FFFF W ', ' H H ', ' H ', ' H HH ', 'WWWW WWWWWWW', ' H W W ', ' FF W H W ', 'WWWW WW W ', ' FF W ', ' H H G'], '2x2': ['SH', ' G'], '4x4': ['S ', ' H H', ' H', 'H G'], '8x16': ['S H ', ' H HH ', ' FF WWWWWWW', ' H W ', ' FF W H ', ' W ', ' FF W ', ' H H G'], '8x8': ['S ', ' ', ' H ', ' H ', ' H ', ' HH H ', ' H H H ', ' H G'], 'chain': ['G S F G']}

	

	
get_discrete_pos(x, y)

	Returns a single, discrete int-value.
Calculated by walking down the rows of the grid first (starting in upper left corner),
then along the col-axis.

	Args:

	x (int): The x-coordinate.
y (int): The y-coordinate.

	Returns:

	int: The discrete pos value corresponding to the given x and y.

	
get_dist_to_goal()

	

	
get_possible_next_positions(discrete_pos, action)

	Given a discrete position value and an action, returns a list of possible next states and
their probabilities. Only next states with non-zero probabilities will be returned.
For now: Implemented as a deterministic MDP.

	Args:

	discrete_pos (int): The discrete position to return possible next states for.
action (int): The action choice.

	Returns:

	
	List[Tuple[int,float]]: A list of tuples (s’, p(s’|s,a)). Where s’ is the next discrete position and

	p(s’|s,a) is the probability of ending up in that position when in state s and taking action a.

	
refresh_state()

	

	
render()

	Should render the Environment in its current state. May be implemented or not.

	
reset(randomize=False)

	
	Args:

	
	randomize (bool): Whether to start the new episode in a random position (instead of “S”).

	This could be an empty space (” “), the default start (“S”) or a fire field (“F”).

	
seed(seed=None)

	Sets the random seed of the environment to the given value.

	Args:

	seed (int): The seed to use (default: current epoch seconds).

	Returns:

	int: The seed actually used.

	
step(actions, set_discrete_pos=None)

	Action map:
0: up
1: right
2: down
3: left

	Args:

	actions (int): An integer 0-3 that describes the next action.
set_discrete_pos (Optional[int]): An integer to set the current discrete position to before acting.

	Returns:

	tuple: State Space (Space), reward (float), is_terminal (bool), info (usually None).

	
update_cam_pixels()

	

	
x

	

	
y

	

5.4. OpenAI Gym Environments

	
class rlgraph.environments.openai_gym.OpenAIGymEnv(gym_env, frameskip=None, max_num_noops=0, noop_action=0, episodic_life=False, fire_reset=False, monitor=None, monitor_safe=False, monitor_video=0, visualize=False, **kwargs)

	Bases: rlgraph.environments.environment.Environment

OpenAI Gym adapter for RLgraph: https://gym.openai.com/.

	
episodic_reset()

	

	
noop_reset()

	Steps through reset and warm-start.

	
render()

	Should render the Environment in its current state. May be implemented or not.

	
reset()

	Resets the state of the environment, returning an initial observation.

	Returns:

	tuple: The Env’s state after the reset.

	
reset_for_env_stepper()

	

	
seed(seed=None)

	Sets the random seed of the environment to the given value.

	Args:

	seed (int): The seed to use (default: current epoch seconds).

	Returns:

	int: The seed actually used.

	
step(actions)

	Run one time step of the environment’s dynamics. When the end of an episode is reached, reset() should be
called to reset the environment’s internal state.

	Args:

	
	kwargs (any): The action(s) to be executed by the environment. Actions have to be members of this

	Environment’s action_space (a call to self.action_space.contains(action) must return True)

	Returns:

	
	tuple:

	
	The state s’ after(!) executing the given actions(s).

	The reward received after taking a in s.

	Whether s’ is a terminal state.

	Some Environment specific info.

	
step_for_env_stepper(actions)

	

	
terminate()

	Clean up operation. May be implemented or not.

	
static translate_space(space, dtype=None)

	Translates openAI spaces into RLGraph Space classes.

	Args:

	space (gym.spaces.Space): The openAI Space to be translated.

	Returns:

	Space: The translated rlgraph Space.

5.5. DeepMind Lab Environments

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rlgraph	

 	
 	
 rlgraph.agents.agent	

 	
 	
 rlgraph.agents.apex_agent	

 	
 	
 rlgraph.agents.dqn_agent	

 	
 	
 rlgraph.agents.impala_agent	

 	
 	
 rlgraph.components.action_adapters.action_adapter	

 	
 	
 rlgraph.components.action_adapters.baseline_action_adapter	

 	
 	
 rlgraph.components.action_adapters.dueling_action_adapter	

 	
 	
 rlgraph.components.common.batch_splitter	

 	
 	
 rlgraph.components.common.container_splitter	

 	
 	
 rlgraph.components.common.dict_merger	

 	
 	
 rlgraph.components.common.environment_stepper	

 	
 	
 rlgraph.components.common.repeater_stack	

 	
 	
 rlgraph.components.common.sampler	

 	
 	
 rlgraph.components.common.slice	

 	
 	
 rlgraph.components.common.staging_area	

 	
 	
 rlgraph.components.common.synchronizable	

 	
 	
 rlgraph.components.component	

 	
 	
 rlgraph.components.distributions.bernoulli	

 	
 	
 rlgraph.components.distributions.beta	

 	
 	
 rlgraph.components.distributions.categorical	

 	
 	
 rlgraph.components.distributions.distribution	

 	
 	
 rlgraph.components.distributions.normal	

 	
 	
 rlgraph.components.explorations.epsilon_exploration	

 	
 	
 rlgraph.components.explorations.exploration	

 	
 	
 rlgraph.components.helpers	

 	
 	
 rlgraph.components.layers.layer	

 	
 	
 rlgraph.components.layers.nn.activation_functions	

 	
 	
 rlgraph.components.layers.nn.concat_layer	

 	
 	
 rlgraph.components.layers.nn.conv2d_layer	

 	
 	
 rlgraph.components.layers.nn.dense_layer	

 	
 	
 rlgraph.components.layers.nn.lstm_layer	

 	
 	
 rlgraph.components.layers.nn.maxpool2d_layer	

 	
 	
 rlgraph.components.layers.nn.nn_layer	

 	
 	
 rlgraph.components.layers.nn.residual_layer	

 	
 	
 rlgraph.components.layers.preprocessing.preprocess_layer	

 	
 	
 rlgraph.components.layers.strings.string_layer	

 	
 	
 rlgraph.components.loss_functions.dqn_loss_function	

 	
 	
 rlgraph.components.loss_functions.impala_loss_function	

 	
 	
 rlgraph.components.loss_functions.loss_function	

 	
 	
 rlgraph.components.memories.fifo_queue	

 	
 	
 rlgraph.components.memories.memory	

 	
 	
 rlgraph.components.memories.prioritized_replay	

 	
 	
 rlgraph.components.memories.queue_runner	

 	
 	
 rlgraph.components.memories.replay_memory	

 	
 	
 rlgraph.components.neural_networks.actor_component	

 	
 	
 rlgraph.components.neural_networks.dict_preprocessor_stack	

 	
 	
 rlgraph.components.neural_networks.neural_network	

 	
 	
 rlgraph.components.neural_networks.policy	

 	
 	
 rlgraph.components.neural_networks.preprocessor_stack	

 	
 	
 rlgraph.components.neural_networks.stack	

 	
 	
 rlgraph.components.optimizers.horovod_optimizer	

 	
 	
 rlgraph.components.optimizers.local_optimizers	

 	
 	
 rlgraph.components.optimizers.optimizer	

 	
 	
 rlgraph.components.papers	

 	
 	
 rlgraph.components.queues	

 	
 	
 rlgraph.environments.environment	

 	
 	
 rlgraph.environments.grid_world	

 	
 	
 rlgraph.environments.openai_gym	

 	
 	
 rlgraph.environments.random_env	

 	
 	
 rlgraph.spaces.bool_box	

 	
 	
 rlgraph.spaces.box_space	

 	
 	
 rlgraph.spaces.containers	

 	
 	
 rlgraph.spaces.float_box	

 	
 	
 rlgraph.spaces.int_box	

 	
 	
 rlgraph.spaces.space	

 	
 	
 rlgraph.spaces.space_utils	

 	
 	
 rlgraph.spaces.text_box	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	ActionAdapter (class in rlgraph.components.action_adapters.action_adapter)

 	ActorComponent (class in rlgraph.components.neural_networks.actor_component)

 	AdadeltaOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	AdagradOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	AdamOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	
 	add_components() (rlgraph.components.component.Component method)

 	Agent (class in rlgraph.agents.agent)

 	ApexAgent (class in rlgraph.agents.apex_agent)

 	apply() (rlgraph.components.layers.nn.lstm_layer.LSTMLayer method)

 	assign_variable() (rlgraph.components.component.Component static method)

B

 	
 	BaselineActionAdapter (class in rlgraph.components.action_adapters.baseline_action_adapter)

 	BatchSplitter (class in rlgraph.components.common.batch_splitter)

 	Bernoulli (class in rlgraph.components.distributions.bernoulli)

 	Beta (class in rlgraph.components.distributions.beta)

 	
 	BoolBox (class in rlgraph.spaces.bool_box)

 	bounds (rlgraph.spaces.box_space.BoxSpace attribute)

 	BoxSpace (class in rlgraph.spaces.box_space)

 	build() (rlgraph.agents.agent.Agent method)

C

 	
 	call_api_method() (rlgraph.agents.agent.Agent method)

 	call_count (rlgraph.components.component.Component attribute)

 	call_times (rlgraph.components.component.Component attribute)

 	Categorical (class in rlgraph.components.distributions.categorical)

 	check_input_completeness() (rlgraph.components.common.synchronizable.Synchronizable method), [1]

 	(rlgraph.components.component.Component method)

 	check_input_spaces() (rlgraph.components.action_adapters.action_adapter.ActionAdapter method)

 	(rlgraph.components.action_adapters.baseline_action_adapter.BaselineActionAdapter method)

 	(rlgraph.components.common.container_splitter.ContainerSplitter method)

 	(rlgraph.components.common.dict_merger.DictMerger method)

 	(rlgraph.components.component.Component method)

 	(rlgraph.components.distributions.beta.Beta method)

 	(rlgraph.components.distributions.distribution.Distribution method)

 	(rlgraph.components.distributions.normal.Normal method)

 	(rlgraph.components.explorations.epsilon_exploration.EpsilonExploration method)

 	(rlgraph.components.explorations.exploration.Exploration method)

 	(rlgraph.components.helpers.VTraceFunction method)

 	(rlgraph.components.layers.nn.concat_layer.ConcatLayer method)

 	(rlgraph.components.layers.nn.lstm_layer.LSTMLayer method)

 	(rlgraph.components.layers.nn.nn_layer.NNLayer method)

 	(rlgraph.components.layers.strings.string_layer.StringLayer method)

 	(rlgraph.components.loss_functions.dqn_loss_function.DQNLossFunction method)

 	(rlgraph.components.loss_functions.impala_loss_function.IMPALALossFunction method)

 	check_space_equivalence() (in module rlgraph.spaces.space_utils)

 	check_variable_completeness() (rlgraph.components.component.Component method)

 	
 	Component (class in rlgraph.components.component)

 	ConcatLayer (class in rlgraph.components.layers.nn.concat_layer)

 	ContainerSpace (class in rlgraph.spaces.containers)

 	ContainerSplitter (class in rlgraph.components.common.container_splitter)

 	contains() (rlgraph.spaces.bool_box.BoolBox method)

 	(rlgraph.spaces.box_space.BoxSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.int_box.IntBox method)

 	(rlgraph.spaces.space.Space method)

 	(rlgraph.spaces.text_box.TextBox method)

 	Conv2DLayer (class in rlgraph.components.layers.nn.conv2d_layer)

 	copy() (rlgraph.components.component.Component method)

 	create_summary() (rlgraph.components.component.Component method)

 	create_variables() (rlgraph.components.common.container_splitter.ContainerSplitter method)

 	(rlgraph.components.common.environment_stepper.EnvironmentStepper method)

 	(rlgraph.components.common.staging_area.StagingArea method)

 	(rlgraph.components.component.Component method)

 	(rlgraph.components.layers.nn.conv2d_layer.Conv2DLayer method)

 	(rlgraph.components.layers.nn.dense_layer.DenseLayer method)

 	(rlgraph.components.layers.nn.lstm_layer.LSTMLayer method)

 	(rlgraph.components.memories.fifo_queue.FIFOQueue method)

 	(rlgraph.components.memories.memory.Memory method)

 	(rlgraph.components.memories.prioritized_replay.PrioritizedReplay method)

 	(rlgraph.components.memories.replay_memory.ReplayMemory method)

D

 	
 	default_environment_spec (rlgraph.agents.impala_agent.IMPALAAgent attribute)

 	default_internal_states_space (rlgraph.agents.impala_agent.IMPALAAgent attribute)

 	define_api_methods() (rlgraph.agents.agent.Agent method)

 	(rlgraph.agents.dqn_agent.DQNAgent method)

 	(rlgraph.agents.impala_agent.IMPALAAgent method)

 	define_api_methods_actor() (rlgraph.agents.impala_agent.IMPALAAgent method)

 	define_api_methods_learner() (rlgraph.agents.impala_agent.IMPALAAgent method)

 	define_api_methods_single() (rlgraph.agents.impala_agent.IMPALAAgent method)

 	DenseLayer (class in rlgraph.components.layers.nn.dense_layer)

 	Dict (class in rlgraph.spaces.containers)

 	
 	DictMerger (class in rlgraph.components.common.dict_merger)

 	DictPreprocessorStack (class in rlgraph.components.neural_networks.dict_preprocessor_stack)

 	Distribution (class in rlgraph.components.distributions.distribution)

 	do_explore() (rlgraph.components.explorations.epsilon_exploration.EpsilonExploration method)

 	DQNAgent (class in rlgraph.agents.dqn_agent)

 	DQNLossFunction (class in rlgraph.components.loss_functions.dqn_loss_function)

 	draw() (rlgraph.components.distributions.distribution.Distribution method)

 	dtype (rlgraph.spaces.containers.Dict attribute)

 	(rlgraph.spaces.containers.Tuple attribute)

 	DuelingActionAdapter (class in rlgraph.components.action_adapters.dueling_action_adapter)

E

 	
 	entropy() (rlgraph.components.distributions.distribution.Distribution method)

 	Environment (class in rlgraph.environments.environment)

 	EnvironmentStepper (class in rlgraph.components.common.environment_stepper)

 	
 	episodic_reset() (rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	EpsilonExploration (class in rlgraph.components.explorations.epsilon_exploration)

 	Exploration (class in rlgraph.components.explorations.exploration)

 	export_graph() (rlgraph.agents.agent.Agent method)

F

 	
 	FIFOQueue (class in rlgraph.components.memories.fifo_queue)

 	flat_dim (rlgraph.spaces.box_space.BoxSpace attribute)

 	(rlgraph.spaces.containers.Dict attribute)

 	(rlgraph.spaces.containers.Tuple attribute)

 	(rlgraph.spaces.space.Space attribute)

 	flat_dim_with_categories (rlgraph.spaces.int_box.IntBox attribute)

 	flatten() (rlgraph.spaces.space.Space method)

 	FloatBox (class in rlgraph.spaces.float_box)

 	
 	force_batch() (rlgraph.spaces.box_space.BoxSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.space.Space method)

 	force_tuple() (in module rlgraph.components.common.environment_stepper)

 	(in module rlgraph.components.neural_networks.neural_network)

 	(in module rlgraph.components.neural_networks.stack)

 	from_spec() (rlgraph.components.neural_networks.stack.Stack class method)

G

 	
 	get() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	get_action() (rlgraph.agents.agent.Agent method)

 	(rlgraph.agents.dqn_agent.DQNAgent method)

 	(rlgraph.agents.impala_agent.IMPALAAgent method)

 	(rlgraph.components.neural_networks.policy.Policy method)

 	get_action_layer_output() (rlgraph.components.action_adapters.action_adapter.ActionAdapter method)

 	(rlgraph.components.action_adapters.dueling_action_adapter.DuelingActionAdapter method)

 	(rlgraph.components.neural_networks.policy.Policy method)

 	get_activation_function() (in module rlgraph.components.layers.nn.activation_functions)

 	get_all_sub_components() (rlgraph.components.component.Component method)

 	get_backend() (in module rlgraph)

 	get_discrete_pos() (rlgraph.environments.grid_world.GridWorld method)

 	get_dist_to_goal() (rlgraph.environments.grid_world.GridWorld method)

 	get_distributed_backend() (in module rlgraph)

 	get_entropy() (rlgraph.components.neural_networks.policy.Policy method)

 	get_list_registry() (in module rlgraph.spaces.space_utils)

 	get_logits() (rlgraph.components.action_adapters.action_adapter.ActionAdapter method)

 	(rlgraph.components.action_adapters.baseline_action_adapter.BaselineActionAdapter method)

 	get_logits_probabilities_log_probs() (rlgraph.components.action_adapters.action_adapter.ActionAdapter method)

 	(rlgraph.components.action_adapters.baseline_action_adapter.BaselineActionAdapter method)

 	(rlgraph.components.action_adapters.dueling_action_adapter.DuelingActionAdapter method)

 	(rlgraph.components.neural_networks.policy.Policy method)

 	get_max_likelihood_action() (rlgraph.components.neural_networks.policy.Policy method)

 	get_min_value() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	get_nn_output() (rlgraph.components.neural_networks.policy.Policy method)

 	get_number_of_allowed_inputs() (rlgraph.components.component.Component method)

 	get_optimizer_variables() (rlgraph.components.optimizers.local_optimizers.LocalOptimizer method)

 	(rlgraph.components.optimizers.optimizer.Optimizer method)

 	
 	get_parents() (rlgraph.components.component.Component method)

 	get_policy_weights() (rlgraph.agents.agent.Agent method)

 	get_possible_next_positions() (rlgraph.environments.grid_world.GridWorld method)

 	get_preprocessed_space() (rlgraph.components.layers.layer.Layer method)

 	(rlgraph.components.neural_networks.dict_preprocessor_stack.DictPreprocessorStack method)

 	(rlgraph.components.neural_networks.preprocessor_stack.PreprocessorStack method)

 	get_preprocessed_state_action_and_action_probs() (rlgraph.components.neural_networks.actor_component.ActorComponent method)

 	get_preprocessed_state_and_action() (rlgraph.components.neural_networks.actor_component.ActorComponent method)

 	get_shape() (rlgraph.spaces.box_space.BoxSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.int_box.IntBox method)

 	(rlgraph.spaces.space.Space method)

 	get_space_from_op() (in module rlgraph.spaces.space_utils)

 	get_state_values_and_logits() (rlgraph.components.action_adapters.baseline_action_adapter.BaselineActionAdapter method)

 	get_stochastic_action() (rlgraph.components.neural_networks.policy.Policy method)

 	get_sub_component_by_global_scope() (rlgraph.components.component.Component method)

 	get_sub_component_by_name() (rlgraph.components.component.Component method)

 	get_sum() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	get_td_loss() (rlgraph.agents.apex_agent.ApexAgent method)

 	get_variable() (rlgraph.components.component.Component method)

 	(rlgraph.spaces.box_space.BoxSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.space.Space method)

 	get_variables() (rlgraph.components.component.Component method)

 	get_variables_by_name() (rlgraph.components.component.Component method)

 	GradientDescentOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	GridWorld (class in rlgraph.environments.grid_world)

H

 	
 	has_rnn() (rlgraph.components.neural_networks.neural_network.NeuralNetwork method)

 	
 	HorovodOptimizer (class in rlgraph.components.optimizers.horovod_optimizer)

I

 	
 	IMPALAAgent (class in rlgraph.agents.impala_agent)

 	IMPALALossFunction (class in rlgraph.components.loss_functions.impala_loss_function)

 	import_observations() (rlgraph.agents.agent.Agent method)

 	index_of_prefixsum() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	
 	insert() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	IntBox (class in rlgraph.spaces.int_box)

K

 	
 	kl_divergence() (rlgraph.components.distributions.distribution.Distribution method)

L

 	
 	Layer (class in rlgraph.components.layers.layer)

 	load_model() (rlgraph.agents.agent.Agent method)

 	LocalOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	log_prob() (rlgraph.components.distributions.distribution.Distribution method)

 	
 	loss() (rlgraph.components.loss_functions.dqn_loss_function.DQNLossFunction method)

 	(rlgraph.components.loss_functions.impala_loss_function.IMPALALossFunction method)

 	(rlgraph.components.loss_functions.loss_function.LossFunction method)

 	LossFunction (class in rlgraph.components.loss_functions.loss_function)

 	LSTMLayer (class in rlgraph.components.layers.nn.lstm_layer)

M

 	
 	MAPS (rlgraph.environments.grid_world.GridWorld attribute)

 	MaxPool2DLayer (class in rlgraph.components.layers.nn.maxpool2d_layer)

 	
 	Memory (class in rlgraph.components.memories.memory)

 	MemSegmentTree (class in rlgraph.components.helpers)

N

 	
 	NadamOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	NeuralNetwork (class in rlgraph.components.neural_networks.neural_network)

 	
 	NNLayer (class in rlgraph.components.layers.nn.nn_layer)

 	noop_reset() (rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	Normal (class in rlgraph.components.distributions.normal)

O

 	
 	observe() (rlgraph.agents.agent.Agent method)

 	
 	OpenAIGymEnv (class in rlgraph.environments.openai_gym)

 	Optimizer (class in rlgraph.components.optimizers.optimizer)

P

 	
 	Policy (class in rlgraph.components.neural_networks.policy)

 	preprocess_states() (rlgraph.agents.agent.Agent method)

 	PreprocessLayer (class in rlgraph.components.layers.preprocessing.preprocess_layer)

 	PreprocessorStack (class in rlgraph.components.neural_networks.preprocessor_stack)

 	
 	PrioritizedReplay (class in rlgraph.components.memories.prioritized_replay)

 	propagate_scope() (rlgraph.components.component.Component method)

 	propagate_sub_component_properties() (rlgraph.components.component.Component method)

 	propagate_summary() (rlgraph.components.component.Component method)

 	propagate_variables() (rlgraph.components.component.Component method)

Q

 	
 	QueueRunner (class in rlgraph.components.memories.queue_runner)

R

 	
 	RandomEnv (class in rlgraph.environments.random_env)

 	rank (rlgraph.spaces.containers.Dict attribute)

 	(rlgraph.spaces.containers.Tuple attribute)

 	(rlgraph.spaces.space.Space attribute)

 	read_variable() (rlgraph.components.component.Component static method)

 	reduce() (rlgraph.components.helpers.MemSegmentTree method)

 	(rlgraph.components.helpers.SegmentTree method)

 	refresh_state() (rlgraph.environments.grid_world.GridWorld method)

 	register_api_methods_and_graph_fns() (rlgraph.components.component.Component method)

 	register_variables() (rlgraph.components.component.Component method)

 	remove_sub_component_by_name() (rlgraph.components.component.Component method)

 	render() (rlgraph.environments.environment.Environment method)

 	(rlgraph.environments.grid_world.GridWorld method)

 	(rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	RepeaterStack (class in rlgraph.components.common.repeater_stack)

 	ReplayMemory (class in rlgraph.components.memories.replay_memory)

 	reset() (rlgraph.agents.agent.Agent method)

 	(rlgraph.agents.dqn_agent.DQNAgent method)

 	(rlgraph.components.neural_networks.dict_preprocessor_stack.DictPreprocessorStack method)

 	(rlgraph.components.neural_networks.preprocessor_stack.PreprocessorStack method)

 	(rlgraph.environments.environment.Environment method)

 	(rlgraph.environments.grid_world.GridWorld method)

 	(rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	(rlgraph.environments.random_env.RandomEnv method)

 	reset_env_buffers() (rlgraph.agents.agent.Agent method)

 	reset_for_env_stepper() (rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	(rlgraph.environments.random_env.RandomEnv method)

 	reset_profile() (rlgraph.components.component.Component static method)

 	ResidualLayer (class in rlgraph.components.layers.nn.residual_layer)

 	rlgraph (module)

 	rlgraph.agents.agent (module)

 	rlgraph.agents.apex_agent (module)

 	rlgraph.agents.dqn_agent (module)

 	rlgraph.agents.impala_agent (module)

 	rlgraph.components.action_adapters.action_adapter (module)

 	rlgraph.components.action_adapters.baseline_action_adapter (module)

 	rlgraph.components.action_adapters.dueling_action_adapter (module)

 	rlgraph.components.common.batch_splitter (module)

 	rlgraph.components.common.container_splitter (module)

 	rlgraph.components.common.dict_merger (module)

 	rlgraph.components.common.environment_stepper (module)

 	rlgraph.components.common.repeater_stack (module)

 	rlgraph.components.common.sampler (module)

 	rlgraph.components.common.slice (module)

 	rlgraph.components.common.staging_area (module)

 	rlgraph.components.common.synchronizable (module), [1]

 	rlgraph.components.component (module)

 	rlgraph.components.distributions.bernoulli (module)

 	rlgraph.components.distributions.beta (module)

 	
 	rlgraph.components.distributions.categorical (module)

 	rlgraph.components.distributions.distribution (module)

 	rlgraph.components.distributions.normal (module)

 	rlgraph.components.explorations.epsilon_exploration (module)

 	rlgraph.components.explorations.exploration (module)

 	rlgraph.components.helpers (module)

 	rlgraph.components.layers.layer (module)

 	rlgraph.components.layers.nn.activation_functions (module)

 	rlgraph.components.layers.nn.concat_layer (module)

 	rlgraph.components.layers.nn.conv2d_layer (module)

 	rlgraph.components.layers.nn.dense_layer (module)

 	rlgraph.components.layers.nn.lstm_layer (module)

 	rlgraph.components.layers.nn.maxpool2d_layer (module)

 	rlgraph.components.layers.nn.nn_layer (module)

 	rlgraph.components.layers.nn.residual_layer (module)

 	rlgraph.components.layers.preprocessing.preprocess_layer (module)

 	rlgraph.components.layers.strings.string_layer (module)

 	rlgraph.components.loss_functions.dqn_loss_function (module)

 	rlgraph.components.loss_functions.impala_loss_function (module)

 	rlgraph.components.loss_functions.loss_function (module)

 	rlgraph.components.memories.fifo_queue (module)

 	rlgraph.components.memories.memory (module)

 	rlgraph.components.memories.prioritized_replay (module)

 	rlgraph.components.memories.queue_runner (module)

 	rlgraph.components.memories.replay_memory (module)

 	rlgraph.components.neural_networks.actor_component (module)

 	rlgraph.components.neural_networks.dict_preprocessor_stack (module)

 	rlgraph.components.neural_networks.neural_network (module)

 	rlgraph.components.neural_networks.policy (module)

 	rlgraph.components.neural_networks.preprocessor_stack (module)

 	rlgraph.components.neural_networks.stack (module)

 	rlgraph.components.optimizers.horovod_optimizer (module)

 	rlgraph.components.optimizers.local_optimizers (module)

 	rlgraph.components.optimizers.optimizer (module)

 	rlgraph.components.papers (module)

 	rlgraph.components.queues (module)

 	rlgraph.environments.environment (module)

 	rlgraph.environments.grid_world (module)

 	rlgraph.environments.openai_gym (module)

 	rlgraph.environments.random_env (module)

 	rlgraph.spaces.bool_box (module)

 	rlgraph.spaces.box_space (module)

 	rlgraph.spaces.containers (module)

 	rlgraph.spaces.float_box (module)

 	rlgraph.spaces.int_box (module)

 	rlgraph.spaces.space (module)

 	rlgraph.spaces.space_utils (module)

 	rlgraph.spaces.text_box (module)

 	RMSPropOptimizer (class in rlgraph.components.optimizers.local_optimizers)

S

 	
 	sample() (rlgraph.spaces.bool_box.BoolBox method)

 	(rlgraph.spaces.containers.ContainerSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.float_box.FloatBox method)

 	(rlgraph.spaces.int_box.IntBox method)

 	(rlgraph.spaces.space.Space method)

 	(rlgraph.spaces.text_box.TextBox method)

 	sample_deterministic() (rlgraph.components.distributions.distribution.Distribution method)

 	sample_stochastic() (rlgraph.components.distributions.distribution.Distribution method)

 	Sampler (class in rlgraph.components.common.sampler)

 	sanity_check_space() (in module rlgraph.spaces.space_utils)

 	scatter_update_variable() (rlgraph.components.component.Component static method)

 	seed() (rlgraph.environments.environment.Environment method)

 	(rlgraph.environments.grid_world.GridWorld method)

 	(rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	(rlgraph.environments.random_env.RandomEnv method)

 	SegmentTree (class in rlgraph.components.helpers)

 	set_policy_weights() (rlgraph.agents.agent.Agent method)

 	
 	SGDOptimizer (class in rlgraph.components.optimizers.local_optimizers)

 	shape (rlgraph.spaces.containers.Dict attribute)

 	(rlgraph.spaces.containers.Tuple attribute)

 	(rlgraph.spaces.space.Space attribute)

 	Slice (class in rlgraph.components.common.slice)

 	SoftMax (class in rlgraph.components.helpers)

 	Space (class in rlgraph.spaces.space)

 	Stack (class in rlgraph.components.neural_networks.stack)

 	StagingArea (class in rlgraph.components.common.staging_area)

 	step() (rlgraph.environments.environment.Environment method)

 	(rlgraph.environments.grid_world.GridWorld method)

 	(rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	(rlgraph.environments.random_env.RandomEnv method)

 	step_for_env_stepper() (rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	(rlgraph.environments.random_env.RandomEnv method)

 	store_model() (rlgraph.agents.agent.Agent method)

 	StringLayer (class in rlgraph.components.layers.strings.string_layer)

 	sub_component_by_name() (rlgraph.components.component.Component method)

 	Synchronizable (class in rlgraph.components.common.synchronizable), [1]

T

 	
 	terminate() (rlgraph.agents.agent.Agent method)

 	(rlgraph.environments.environment.Environment method)

 	(rlgraph.environments.openai_gym.OpenAIGymEnv method)

 	
 	TextBox (class in rlgraph.spaces.text_box)

 	translate_space() (rlgraph.environments.openai_gym.OpenAIGymEnv static method)

 	Tuple (class in rlgraph.spaces.containers)

U

 	
 	update() (rlgraph.agents.agent.Agent method)

 	(rlgraph.agents.apex_agent.ApexAgent method)

 	(rlgraph.agents.dqn_agent.DQNAgent method)

 	(rlgraph.agents.impala_agent.IMPALAAgent method)

 	
 	update_cam_pixels() (rlgraph.environments.grid_world.GridWorld method)

V

 	
 	VTraceFunction (class in rlgraph.components.helpers)

W

 	
 	when_input_complete() (rlgraph.components.component.Component method)

 	with_batch_rank() (rlgraph.spaces.space.Space method)

 	
 	with_extra_ranks() (rlgraph.spaces.space.Space method)

 	with_time_rank() (rlgraph.spaces.space.Space method)

X

 	
 	x (rlgraph.environments.grid_world.GridWorld attribute)

Y

 	
 	y (rlgraph.environments.grid_world.GridWorld attribute)

Z

 	
 	zeros() (rlgraph.spaces.box_space.BoxSpace method)

 	(rlgraph.spaces.containers.Dict method)

 	(rlgraph.spaces.containers.Tuple method)

 	(rlgraph.spaces.space.Space method)

README

[![PyPI version](https://badge.fury.io/py/rlgraph.svg)](https://badge.fury.io/py/rlgraph)
[![Python 3.5](https://img.shields.io/badge/python-3.5-orange.svg)](https://www.python.org/downloads/release/python-356/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/rlgraph/rlgraph/blob/master/LICENSE)
[![Documentation Status](https://readthedocs.org/projects/rlgraph/badge/?version=latest)](https://rlgraph.readthedocs.io/en/latest/?badge=latest)
[![Build Status](https://travis-ci.org/rlgraph/rlgraph.svg?branch=master)](https://travis-ci.org/rlgraph/rlgraph)

RLgraph
Flexible computation graphs for deep reinforcement learning.

RLgraph is a framework to quickly prototype, define and execute reinforcement learning
algorithms both in research and practice. RLgraph is different from most other libraries as it can support
TensorFlow (or static graphs in general) or eager/define-by run execution (PyTorch) through
a single component interface.

RLgraph exposes a well defined API for using agents, and offers a novel component concept
for testing and assembly of components. By separating graph definition, compilation and execution,
multiple distributed backends and device execution strategies can be accessed without modifying
agent definitions.

Install

The simplest way to install RLgraph is from pip:

`pip install rlgraph`

Note that some backends (e.g. ray) need additional dependencies (see setup.py). For example, to install dependencies for the distributed backend ray, enter:

`pip install rlgraph[ray]`

To successfully run tests, please also install OpenAI gym, e.g.

`pip install gym[all]`

Upon calling RLgraph, a config JSON is created under ~.rlgraph/rlgraph.json
which can be used to change backend settings. The current default stable
backend is TensorFlow (“tf”), the PyTorch backend (“pytorch”) supports
component build and execution but not all utilities support all backends yet
in pre-alpha phase.

Import and use agents

Agents can be imported and used as follows:

```python
from rlgraph.agents import DQNAgent
environment = OpenAIGymEnv(“Cartpole-v0”)

# Create from .json file or dict, see agent API for all
# possible configuration parameters.
agent = DQNAgent(


“configs/config.json”,
state_space=environment.state_space,
action_space=environment.action_space




)

# Get an action, take a step, observe reward.
state = environment.reset()
action, preprocessed state = agent.get_action(


states=state,
extra_returns=”preprocessed_states”




)

# Execute step in environment.
next_state, reward, terminal, info =  environment.step(action)

# Observe result.
agent.observe(


preprocessed_states=preprocessed_state,
actions=action,
internals=[],
rewards=reward




)

# Call update when desired:
loss = agent.update()
```

Distributed execution

RLgraph supports multiple distributed backends, as graph definition and execution are separate. For example, to use
a high performance version of distributed DQN (Ape-X), a corresponding ApexExecutor can distribute execution via Ray:

```python
from rlgraph.execution.ray import ApexExecutor

# See learning tests for example configurations e,g.
# rlgraph/tests/execution/test_apex_executor.py
env_spec = dict(type=”openai”, gym_env=”CartPole-v0”)

# Ray executor creating Ray actors.
exec = ApexExecutor(


environment_spec=env_spec,
agent_config=agent_config,




)

# Executes actual workload on distributed Ray cluster.
result = exec.execute_workload(workload=dict(num_timesteps=10000, report_interval=1000))

# Prints result metrics.
print(result)
```

More detailed examples and docs coming soon.

 [image:]

Common Components

Batch Splitter

	
class rlgraph.components.common.batch_splitter.BatchSplitter(num_shards, shard_size, **kwargs)

	Bases: rlgraph.components.component.Component

Splits a number of incoming DataOps along their batch dimension.

Container Splitter

	
class rlgraph.components.common.container_splitter.ContainerSplitter(*output_order, **kwargs)

	Bases: rlgraph.components.component.Component

Splits an incoming container Space into all its single primitive Spaces.

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

Dict Merger

	
class rlgraph.components.common.dict_merger.DictMerger(*input_names, **kwargs)

	Bases: rlgraph.components.component.Component

Merges incoming items into one FlattenedDataOp.

	API:

	merge(*inputs) -> DataOpDict with keys=`self.input_names` and values=inputs

	
check_input_spaces(input_spaces, action_space=None)

	Should check on the nature of all in-Sockets Spaces of this Component. This method is called automatically
by the Model when all these Spaces are know during the Model’s build time.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the
action Space information into many Components’ constructors.

Environment Stepper

	
class rlgraph.components.common.environment_stepper.EnvironmentStepper(environment_spec, actor_component_spec, num_steps=20, state_space=None, reward_space=None, internal_states_space=None, add_action_probs=False, action_probs_space=None, add_previous_action=False, add_previous_reward=False, **kwargs)

	Bases: rlgraph.components.component.Component

A Component that takes an Environment object, a PreprocessorStack and a Policy to step
n times through the environment, each time picking actions depending on the states that the environment produces.

	API:

	
	reset(): Resets the Environment stepper including its environment and gets everything ready for stepping.

	Resets the stored state, return and terminal of the env.

	step(): Performs n steps through the environment and returns some

	collected stats: preprocessed_states, actions taken, (optional: action log-probabilities)?, rewards,
accumulated episode returns, terminals, next states (un-preprocessed), (optional: internal states, only
for RNN based ActorComponents).

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

	
rlgraph.components.common.environment_stepper.force_tuple(elements=None, *, to_tuple=True)

	Makes sure elements is returned as a list, whether elements is a single item, already a list, or a tuple.

	Args:

	
	elements (Optional[any]): The inputs as single item, list, or tuple to be converted into a list/tuple.

	If None, returns empty list/tuple.

to_tuple (bool): Whether to use tuple (instead of list).

	Returns:

	
	Union[list,tuple]: All given elements in a list/tuple depending on to_tuple’s value. If elements is None,

	returns an empty list/tuple.

Multi-GPU-Sync Synchronizer

Repeater Stack

	
class rlgraph.components.common.repeater_stack.RepeaterStack(sub_component, repeats=2, scope='repeater', **kwargs)

	Bases: rlgraph.components.neural_networks.stack.Stack

A repeater is a special Stack that copies one(!) sub-Component n times and calls certain API-method(s) n times.
n is the number of repeats.

	API:

	
	apply(input_) -> call’s some API-method on the “repeat-unit” (another Component) n times, each time passing the

	result of the previous repeat and then returning the result of the last repeat.

Sampler

	
class rlgraph.components.common.sampler.Sampler(sampling_strategy='uniform', scope='sampler', **kwargs)

	Bases: rlgraph.components.component.Component

A Sampling component can be used to sample entries from an input op, e.g.
to repeatedly perform sub-sampling.

Slice

	
class rlgraph.components.common.slice.Slice(squeeze=False, scope='slice', **kwargs)

	Bases: rlgraph.components.component.Component

A simple slicer layer. Slices off a piece from the input along the 0th rank returns it.

Staging Area

	
class rlgraph.components.common.staging_area.StagingArea(num_data=1, device='/device:GPU:0', scope='staging-area', **kwargs)

	Bases: rlgraph.components.component.Component

Stages an arbitrary number of incoming ops for next-step processing.
This allows for more efficient handling of dequeued (or otherwise pipelined) data: The data can
be prepared and then staged while a training step is still taking place, the next training step can then
immediately take the staged data, aso.asf..

	
create_variables(input_spaces, action_space=None)

	Should create all variables that are needed within this component,
unless a variable is only needed inside a single _graph_fn-method, in which case,
it should be created there.
Variables must be created via the backend-agnostic self.get_variable-method.

Note that for different scopes in which this component is being used, variables will not(!) be shared.

	Args:

	
	input_spaces (Dict[str,Space]): A dict with Space/shape information.

	keys=in-Socket name (str); values=the associated Space

	action_space (Optional[Space]): The action Space of the Agent/GraphBuilder. Can be used to construct and

	connect more Components (which rely on this information). This eliminates the need to pass the action
Space information into many Components’ constructors.

Synchronizable

	
class rlgraph.components.common.synchronizable.Synchronizable(*args, **kwargs)

	Bases: rlgraph.components.component.Component

The Synchronizable Component adds a simple synchronization API to arbitrary Components to which this
Synchronizable is added (and connected via connections=CONNECT_ALL).
This is useful for constructions like a target network in DQN or for distributed setups where e.g.
local policies need to be sync’d from a global model from time to time.

	
check_input_completeness()

	Checks whether this Component is “input-complete” and stores the result in self.input_complete.
Input-completeness is reached (only once and then it stays that way) if all API-methods of this component
(whose must_be_complete field is not set to False) have all their input Spaces defined.

	Returns:

	bool: Whether this Component is input_complete or not.

Synchronizable

	
class rlgraph.components.common.synchronizable.Synchronizable(*args, **kwargs)

	Bases: rlgraph.components.component.Component

The Synchronizable Component adds a simple synchronization API to arbitrary Components to which this
Synchronizable is added (and connected via connections=CONNECT_ALL).
This is useful for constructions like a target network in DQN or for distributed setups where e.g.
local policies need to be sync’d from a global model from time to time.

	
check_input_completeness()

	Checks whether this Component is “input-complete” and stores the result in self.input_complete.
Input-completeness is reached (only once and then it stays that way) if all API-methods of this component
(whose must_be_complete field is not set to False) have all their input Spaces defined.

	Returns:

	bool: Whether this Component is input_complete or not.

 _images/custom_single_value_memory.png
MyComponent(Component)

method: get_value('

retur

graph_fn ‘get’: .
Variable Registry

selfvalue

graph_fn ‘set’: .

value

method: set_value(] value '

retur

_images/dm_lab_environment.png

_images/grid-world-4x4.png
IHI | IGI

_images/dense_layer_component.png
method: _variables()

Denselayer(Component.Layer.NNLayer) ‘
method: apply(@ SR
backend specific code: .
translate meta-op e.g. tensorflow, pytorch, numpy, ...
record into e.g. tf op. inputs
. . matmul(var.kernel) FO
Variable Registry
kernel
bias
return

_images/dict-space.png
Dict space
shape=((3,3,2), (3))
-

’

“key A”: (-

w

2
“

-
S J

_images/mdp_basic_concept.png
R,
St

Environment

_images/mujoco_environment.png

_images/rank-0-1-and-2-tensors.png
rank-0 tensor (aka.: scalar) rank-1 tensor (aka.: vector) rank-2 tensor (aka.: matrix)
shape=() shape=(4,) shape=(4, 3)

800
aa0
080

3 dimensions
_ Somerem .

[

4 dimensions
4 dimensions

nav.xhtml

 Table of Contents

 		
 RLgraph’s documentation

 		
 Introduction to RLgraph

 		
 The Space Classes

 		
 What is a Space?

 		
 Difference between Space and Tensor

 		
 Ranks, Dimensions and Shapes

 		
 There are two major types of Spaces: BoxSpaces and ContainerSpaces.

 		
 Box Spaces

 		
 Container Spaces

 		
 Special Ranks of BoxSpaces.

 		
 The Environment Classes

 		
 What is an environment?

 		
 RLgraph’s environment adapters.

 		
 OpenAI Gym

 		
 Deepmind Lab

 		
 Simple Grid Worlds

 		
 What is an RLgraph Component?

 		
 The Component Base Class

 		
 API-Methods

 		
 Variables

 		
 Input Spaces and the concept of “input-completeness”

 		
 Graph Functions

 		
 How to Write Your Own Custom Component

 		
 A Simple Single-Value Memory Component

 		
 Class Definition and Constructor

 		
 API-Methods and Input Spaces

 		
 The Single Value Variable

 		
 Under the Hood Coding: Our Graph Functions

 		
 The Complete Code for Our Custom Component

 		
 How to Test Your Components

 		
 Writing a New Test Case with Python’s Unittest Module

 		
 Test 1: Writing a New Value

 		
 Test 2: Retrieving the Value

 		
 Test 3: Testing for the Correct Computation Results

 		
 RLgraph API Reference Documentation

 		
 RLgraph Core API

 		
 Space Classes and Space Utilities

 		
 Space Base Class Reference

 		
 Box Spaces

 		
 Container Spaces

 		
 Space Utilities

 		
 Agent Classes

 		
 Agent Base Class Reference

 		
 DQN Agent

 		
 ApeX Agent

 		
 IMPALA Agent

 		
 Components Reference

 		
 Component Base Class Reference

 		
 Action Adapters

 		
 Distributions

 		
 Explorations

 		
 Helper Components Reference

 		
 Layer Classes

 		
 Loss Functions

 		
 Memories

 		
 Neural Networks

 		
 Optimizers

 		
 RLgraph Components from Select Papers Reference

 		
 Queues Reference

 		
 Environment Classes

 		
 Environment Base Class Reference

 		
 Random Environment

 		
 GridWorld Environments

 		
 OpenAI Gym Environments

 		
 DeepMind Lab Environments

_images/rlcore-logo-full1.png
CDI'E

_images/rlcore-logo-full2.png
CDI'E

_images/rank-3-tensor.png
4 dimensions

rank-3 tensor
shape=(4, 3, 3)

Sl

o 5l

10

2

L

_images/rlcore-logo-full.png
CDI'E

_images/rlcore-logo-full5.png
CDI'E

_images/rlcore-logo-full6.png
CDI'E

_images/rlcore-logo-full3.png
CDI'E

_images/rlcore-logo-full4.png
CDI'E

_images/rlcore-logo-full7.png
CDI'E

_images/tuple-space.png
Tuple space
shape=((4,), (3,3, 2), (4,3,2)

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/up.png

_static/up-pressed.png

